Consistent machine learning for topology optimization with microstructure-dependent neural network material models
- URL: http://arxiv.org/abs/2408.13843v2
- Date: Tue, 27 Aug 2024 14:24:52 GMT
- Title: Consistent machine learning for topology optimization with microstructure-dependent neural network material models
- Authors: Harikrishnan Vijayakumaran, Jonathan B. Russ, Glaucio H. Paulino, Miguel A. Bessa,
- Abstract summary: We present a framework for multiscale structures with spatially varying microstructural symmetry and differentiably different microstructural descriptors.
Our findings highlight the potential of integrating consistency with density-based design optimization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Additive manufacturing methods together with topology optimization have enabled the creation of multiscale structures with controlled spatially-varying material microstructure. However, topology optimization or inverse design of such structures in the presence of nonlinearities remains a challenge due to the expense of computational homogenization methods and the complexity of differentiably parameterizing the microstructural response. A solution to this challenge lies in machine learning techniques that offer efficient, differentiable mappings between the material response and its microstructural descriptors. This work presents a framework for designing multiscale heterogeneous structures with spatially varying microstructures by merging a homogenization-based topology optimization strategy with a consistent machine learning approach grounded in hyperelasticity theory. We leverage neural architectures that adhere to critical physical principles such as polyconvexity, objectivity, material symmetry, and thermodynamic consistency to supply the framework with a reliable constitutive model that is dependent on material microstructural descriptors. Our findings highlight the potential of integrating consistent machine learning models with density-based topology optimization for enhancing design optimization of heterogeneous hyperelastic structures under finite deformations.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - MIND: Microstructure INverse Design with Generative Hybrid Neural Representation [25.55691106041371]
inverse design of microstructures plays a pivotal role in optimizing metamaterials with specific, targeted physical properties.
We present a novel generative model that integrates latent diffusion with Holoplane, an advanced hybrid neural representation that simultaneously encodes both geometric and physical properties.
Our approach generalizes across multiple microstructure classes, enabling the generation of diverse, tileable microstructures with significantly improved property accuracy and enhanced control over geometric validity.
arXiv Detail & Related papers (2025-02-01T20:25:47Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
Large neural networks excel at prediction tasks, but their application to design problems, such as protein engineering or materials discovery, requires solving offline model-based optimization (MBO) problems.
We present Cliqueformer, a transformer-based architecture that learns the black-box function's structure through functional graphical models (FGM)
Across various domains, including chemical and genetic design tasks, Cliqueformer demonstrates superior performance compared to existing methods.
arXiv Detail & Related papers (2024-10-17T00:35:47Z) - Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response [1.283555556182245]
Composite materials with different microstructural material symmetries are common in engineering applications.
We provide neural network architectures that provide effective homogenization models of materials with anisotropic components.
arXiv Detail & Related papers (2024-04-05T14:49:01Z) - A Neural Network Transformer Model for Composite Microstructure Homogenization [1.2277343096128712]
Homogenization methods, such as the Mori-Tanaka method, offer rapid homogenization for a wide range of constituent properties.
This paper illustrates a transformer neural network architecture that captures the knowledge of various microstructures.
The network predicts the history-dependent, non-linear, and homogenized stress-strain response.
arXiv Detail & Related papers (2023-04-16T19:57:52Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Data-Driven Multiscale Design of Cellular Composites with Multiclass
Microstructures for Natural Frequency Maximization [14.337297795182181]
We propose a data-driven topology optimization (TO) approach to enable the multiscale design of cellular structures.
The framework can be easily extended to other multi-scale TO problems, such as thermal compliance and dynamic response optimization.
arXiv Detail & Related papers (2021-06-11T15:59:33Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.