論文の概要: Open-World Weakly-Supervised Object Localization
- arxiv url: http://arxiv.org/abs/2304.08271v1
- Date: Mon, 17 Apr 2023 13:31:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 15:08:23.407988
- Title: Open-World Weakly-Supervised Object Localization
- Title(参考訳): Open World Weakly Supervised Object Localization
- Authors: Jinheng Xie and Zhaochuan Luo and Yuexiang Li and Haozhe Liu and
Linlin Shen and Mike Zheng Shou
- Abstract要約: 我々は、OWSOL(Open-World Weakly-Supervised Object Localization)と呼ばれる、新しい弱い教師付きオブジェクトローカライゼーションタスクを導入する。
本稿では、ラベル付きデータとラベルなしデータの両方を用いて、オブジェクトローカライゼーションのための完全なG-CAMを生成するコントラスト表現協調学習のパラダイムを提案する。
我々は、画像Net-1KとiNatLoc500という2つの広く使われているデータセットを再編成し、OWSOLの評価ベンチマークとしてOpenImages150を提案する。
- 参考スコア(独自算出の注目度): 26.531408294517416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While remarkable success has been achieved in weakly-supervised object
localization (WSOL), current frameworks are not capable of locating objects of
novel categories in open-world settings. To address this issue, we are the
first to introduce a new weakly-supervised object localization task called
OWSOL (Open-World Weakly-Supervised Object Localization). During training, all
labeled data comes from known categories and, both known and novel categories
exist in the unlabeled data. To handle such data, we propose a novel paradigm
of contrastive representation co-learning using both labeled and unlabeled data
to generate a complete G-CAM (Generalized Class Activation Map) for object
localization, without the requirement of bounding box annotation. As no class
label is available for the unlabelled data, we conduct clustering over the full
training set and design a novel multiple semantic centroids-driven contrastive
loss for representation learning. We re-organize two widely used datasets,
i.e., ImageNet-1K and iNatLoc500, and propose OpenImages150 to serve as
evaluation benchmarks for OWSOL. Extensive experiments demonstrate that the
proposed method can surpass all baselines by a large margin. We believe that
this work can shift the close-set localization towards the open-world setting
and serve as a foundation for subsequent works. Code will be released at
https://github.com/ryylcc/OWSOL.
- Abstract(参考訳): 弱い教師付きオブジェクトローカライゼーション(WSOL)では顕著な成功を収めているが、現在のフレームワークでは、オープンワールド設定で新しいカテゴリのオブジェクトを特定できない。
この問題に対処するため,我々はowsol(open-world weak-supervised object localization)と呼ばれる新しい弱教師付きオブジェクトローカライゼーションタスクを導入する。
トレーニング中、ラベル付きデータはすべて既知のカテゴリから得られ、ラベルなしデータには既知のカテゴリと新しいカテゴリの両方が存在する。
このようなデータを扱うために、ラベル付きデータとラベルなしデータの両方を用いたコントラスト表現協調学習のパラダイムを提案し、境界ボックスアノテーションを必要とせず、オブジェクトローカライゼーションのための完全なG-CAM(Generalized Class Activation Map)を生成する。
非ラベルデータにはクラスラベルがないため、フルトレーニングセット上でクラスタリングを行い、表現学習のための新しいセマンティックセントロイド駆動のコントラスト損失を設計する。
imagenet-1k と inatloc500 という2つのデータセットを再編成し,owsol の評価ベンチマークとして openimages150 を提案する。
大規模な実験により,提案手法は全ベースラインを大きなマージンで越えることができた。
この作業は、クローズセットのローカライゼーションをオープンワールド設定にシフトさせ、その後の作業の基盤となることができると考えています。
コードはhttps://github.com/ryylcc/OWSOLでリリースされる。
関連論文リスト
- Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
一般化圏発見(GCD)は、最近提案されたオープンワールドタスクである。
クラスタリングの一貫性を促進するための協調学習ベースのフレームワークを提案する。
提案手法は,3つの総合的なベンチマークと3つのきめ細かい視覚認識データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-30T00:32:47Z) - Learning to Discover and Detect Objects [43.52208526783969]
新たなクラス発見・検出・ローカライゼーション(NCDL)の課題に取り組む。
この設定では、よく観察されるクラスのオブジェクトのラベル付きソースデータセットを仮定する。
検出ネットワークをエンドツーエンドでトレーニングすることにより、さまざまなクラスに対してすべてのリージョン提案を分類することが可能になる。
論文 参考訳(メタデータ) (2022-10-19T17:59:55Z) - Exploiting Unlabeled Data with Vision and Language Models for Object
Detection [64.94365501586118]
堅牢で汎用的なオブジェクト検出フレームワークを構築するには、より大きなラベルスペースとより大きなトレーニングデータセットへのスケーリングが必要である。
本稿では,近年の視覚と言語モデルで利用可能なリッチなセマンティクスを利用して,未ラベル画像中のオブジェクトのローカライズと分類を行う手法を提案する。
生成した擬似ラベルの価値を,オープン語彙検出と半教師付きオブジェクト検出の2つのタスクで示す。
論文 参考訳(メタデータ) (2022-07-18T21:47:15Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
セマンティックにおける新しいクラス発見(NCDSS)について紹介する。
ラベル付き非結合クラスの集合から事前の知識を与えられた新しいクラスを含むラベル付きイメージのセグメンテーションを目的としている。
NCDSSでは、オブジェクトと背景を区別し、画像内の複数のクラスの存在を処理する必要があります。
本稿では,エントロピーに基づく不確実性モデリングと自己学習(EUMS)フレームワークを提案し,ノイズの多い擬似ラベルを克服する。
論文 参考訳(メタデータ) (2021-12-03T13:31:59Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
本研究では,各領域の位置と形状がどの接地トラストオブジェクトとどのように重なり合うかによって,各領域の目的性を純粋に推定する,分類不要なオブジェクトローカライゼーションネットワークを提案する。
この単純な戦略は一般化可能な対象性を学び、クロスカテゴリの一般化に関する既存の提案より優れている。
論文 参考訳(メタデータ) (2021-08-15T14:36:02Z) - Novel Visual Category Discovery with Dual Ranking Statistics and Mutual
Knowledge Distillation [16.357091285395285]
我々は、新しいクラスから異なるセマンティックパーティションに非ラベリングなイメージをグループ化する問題に取り組む。
これは従来の半教師付き学習よりも現実的で難しい設定です。
本稿では,局所的な部分レベル情報に焦点をあてた2分岐学習フレームワークと,全体特性に焦点をあてた2分岐学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-07T17:14:40Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
弱教師付き画像ラベルを持つ対象クラスにおける局所化モデル学習の問題点について検討する。
本研究では,対象関数のみの学習は知識伝達の弱い形態であると主張する。
COCOおよびILSVRC 2013検出データセットの実験では、ペアワイズ類似度関数を含むことにより、ローカライズモデルの性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-03-18T17:53:33Z) - Rethinking the Route Towards Weakly Supervised Object Localization [28.90792512056726]
弱教師付きオブジェクトローカライゼーションは、クラスに依存しないオブジェクトローカライゼーションとオブジェクト分類の2つの部分に分けられるべきである。
クラス非依存のオブジェクトローカライゼーションでは、クラス非依存のメソッドを使用してノイズの多い擬似アノテーションを生成し、クラスラベルなしで境界ボックスのレグレッションを実行する必要がある。
我々のPSOLモデルは、微調整なしで異なるデータセット間で良好な転送性を持つ。
論文 参考訳(メタデータ) (2020-02-26T08:54:20Z) - Semi-Supervised Class Discovery [7.123519086758813]
本稿では,ラベル作成能力の新たな重要度尺度であるデータセット再構成精度について紹介する。
クラスがトレーニングデータセットに追加に値するかどうかを判断するために、新しいクラス学習可能性を適用します。
クラス発見システムは視覚や言語にうまく適用できることを示す。
論文 参考訳(メタデータ) (2020-02-10T00:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。