Benchmarking Actor-Critic Deep Reinforcement Learning Algorithms for
Robotics Control with Action Constraints
- URL: http://arxiv.org/abs/2304.08743v2
- Date: Mon, 29 May 2023 07:39:12 GMT
- Title: Benchmarking Actor-Critic Deep Reinforcement Learning Algorithms for
Robotics Control with Action Constraints
- Authors: Kazumi Kasaura, Shuwa Miura, Tadashi Kozuno, Ryo Yonetani, Kenta
Hoshino, Yohei Hosoe
- Abstract summary: This study presents a benchmark for evaluating action-constrained reinforcement learning (RL) algorithms.
We evaluate existing algorithms and their novel variants across multiple robotics control environments.
- Score: 9.293472255463454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a benchmark for evaluating action-constrained
reinforcement learning (RL) algorithms. In action-constrained RL, each action
taken by the learning system must comply with certain constraints. These
constraints are crucial for ensuring the feasibility and safety of actions in
real-world systems. We evaluate existing algorithms and their novel variants
across multiple robotics control environments, encompassing multiple action
constraint types. Our evaluation provides the first in-depth perspective of the
field, revealing surprising insights, including the effectiveness of a
straightforward baseline approach. The benchmark problems and associated code
utilized in our experiments are made available online at
github.com/omron-sinicx/action-constrained-RL-benchmark for further research
and development.
Related papers
- Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
We introduce the study of reinforcement learning with stepwise fairness constraints.
We provide learning algorithms with strong theoretical guarantees in regard to policy optimality and fairness violation.
arXiv Detail & Related papers (2022-11-08T04:06:23Z) - Ensemble Reinforcement Learning in Continuous Spaces -- A Hierarchical
Multi-Step Approach for Policy Training [4.982806898121435]
We propose a new technique to train an ensemble of base learners based on an innovative multi-step integration method.
This training technique enables us to develop a new hierarchical learning algorithm for ensemble DRL that effectively promotes inter-learner collaboration.
The algorithm is also shown empirically to outperform several state-of-the-art DRL algorithms on multiple benchmark RL problems.
arXiv Detail & Related papers (2022-09-29T00:42:44Z) - Benchmarking Constraint Inference in Inverse Reinforcement Learning [19.314352936252444]
In many real-world problems, the constraints followed by expert agents are often hard to specify mathematically and unknown to the RL agents.
In this paper, we construct a CIRL benchmark in the context of two major application domains: robot control and autonomous driving.
The benchmark, including the information for reproducing the performance of CIRL algorithms, is publicly available at https://github.com/Guiliang/CIRL-benchmarks-public.
arXiv Detail & Related papers (2022-06-20T09:22:20Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
Action-constrained reinforcement learning (RL) is a widely-used approach in various real-world applications.
We propose a learning algorithm that decouples the action constraints from the policy parameter update.
We show that the proposed algorithm significantly outperforms the benchmark methods on a variety of control tasks.
arXiv Detail & Related papers (2021-02-22T14:28:03Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.