論文の概要: Perceive, Excavate and Purify: A Novel Object Mining Framework for
Instance Segmentation
- arxiv url: http://arxiv.org/abs/2304.08826v1
- Date: Tue, 18 Apr 2023 08:47:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 15:37:33.207547
- Title: Perceive, Excavate and Purify: A Novel Object Mining Framework for
Instance Segmentation
- Title(参考訳): Perceive, Excavate and Purify: インスタンスセグメンテーションのための新しいオブジェクトマイニングフレームワーク
- Authors: Jinming Su, Ruihong Yin, Xingyue Chen and Junfeng Luo
- Abstract要約: 本稿では,新しいオブジェクトマイニングフレームワークを提案する。
まず、サブネットを知覚するセマンティクスを導入し、ボトムアップから明らかなインスタンスに属するピクセルをキャプチャする。
このメカニズムでは、事前認識されたセマンティクスは分類と位置を持つ元のインスタンスと見なされ、これらの元のインスタンスを取り巻く識別不能なオブジェクトはマイニングされる。
- 参考スコア(独自算出の注目度): 4.375012768093524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, instance segmentation has made great progress with the rapid
development of deep neural networks. However, there still exist two main
challenges including discovering indistinguishable objects and modeling the
relationship between instances. To deal with these difficulties, we propose a
novel object mining framework for instance segmentation. In this framework, we
first introduce the semantics perceiving subnetwork to capture pixels that may
belong to an obvious instance from the bottom up. Then, we propose an object
excavating mechanism to discover indistinguishable objects. In the mechanism,
preliminary perceived semantics are regarded as original instances with
classifications and locations, and then indistinguishable objects around these
original instances are mined, which ensures that hard objects are fully
excavated. Next, an instance purifying strategy is put forward to model the
relationship between instances, which pulls the similar instances close and
pushes away different instances to keep intra-instance similarity and
inter-instance discrimination. In this manner, the same objects are combined as
the one instance and different objects are distinguished as independent
instances. Extensive experiments on the COCO dataset show that the proposed
approach outperforms state-of-the-art methods, which validates the
effectiveness of the proposed object mining framework.
- Abstract(参考訳): 近年,ディープニューラルネットワークの急速な開発により,インスタンス分割が大きな進展を遂げている。
しかし、識別不能なオブジェクトの発見とインスタンス間の関係のモデリングという2つの大きな課題がまだ残っている。
これらの問題に対処するため,我々は,セグメンテーションのための新しいオブジェクトマイニングフレームワークを提案する。
このフレームワークでは,まずサブネットワークを知覚するセマンティクスを導入し,ボトムアップから明らかなインスタンスに属するピクセルをキャプチャする。
次に, 識別不能な物体を発見するための掘削機構を提案する。
このメカニズムでは、事前認識されたセマンティクスは分類と位置を持つ元のインスタンスと見なされ、その後、これらの元のインスタンスを取り巻く識別不可能なオブジェクトが採掘され、硬いオブジェクトが完全に発掘されることが保証される。
次に、インスタンス間の関係をモデル化するインスタンス浄化戦略が提案され、インスタンス間の類似性とインスタンス間識別を維持するために、類似したインスタンスをクローズし、異なるインスタンスをプッシュする。
このように、同じオブジェクトが1つのインスタンスとして結合され、異なるオブジェクトが独立したインスタンスとして区別される。
COCOデータセットの大規模な実験により、提案手法は最先端の手法よりも優れており、提案手法の有効性が検証されている。
関連論文リスト
- SIM: Semantic-aware Instance Mask Generation for Box-Supervised Instance
Segmentation [22.930296667684125]
本稿では,セマンティック・アウェア・インスタンス・マスク(SIM)生成パラダイムを開発することによって,新しいボックス管理型インスタンス・セグメンテーション手法を提案する。
セマンティック・アウェア・プロトタイプは,同じセマンティクスの異なるインスタンスを区別できないことを考慮し,自己補正機構を提案する。
実験結果から,提案手法が他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-14T05:59:25Z) - Complex-Valued Autoencoders for Object Discovery [62.26260974933819]
本稿では,オブジェクト中心表現に対する分散アプローチとして,複合オートエンコーダを提案する。
このシンプルで効率的なアプローチは、単純なマルチオブジェクトデータセット上の等価な実数値オートエンコーダよりも、より良い再構成性能を実現することを示す。
また、2つのデータセット上のSlotAttentionモデルと競合しないオブジェクト発見性能を実現し、SlotAttentionが失敗する第3のデータセットでオブジェクトをアンタングルする。
論文 参考訳(メタデータ) (2022-04-05T09:25:28Z) - Sparse Instance Activation for Real-Time Instance Segmentation [72.23597664935684]
本稿では,リアルタイムインスタンスセグメンテーションのための概念的・効率的・完全畳み込み型フレームワークを提案する。
SparseInstは非常に高速な推論速度を持ち、COCOベンチマークで40 FPSと37.9 APを達成した。
論文 参考訳(メタデータ) (2022-03-24T03:15:39Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Towards Robust Part-aware Instance Segmentation for Industrial Bin
Picking [113.79582950811348]
産業用ビンピッキングのための新しい部分認識型インスタンスセグメンテーションパイプラインを定式化する。
我々は、部品マスクと部品間オフセットを予測する部分認識ネットワークを設計し、続いて認識された部品をインスタンスに組み立てる部分集約モジュールを設計する。
このデータセットは、細く、非自明な形状の様々な産業オブジェクトを含む。
論文 参考訳(メタデータ) (2022-03-05T14:58:05Z) - Object-Guided Instance Segmentation With Auxiliary Feature Refinement
for Biological Images [58.914034295184685]
サンプルセグメンテーションは、神経細胞相互作用の研究、植物の表現型化、細胞が薬物治療にどう反応するかを定量的に測定するなど、多くの生物学的応用において非常に重要である。
Boxベースのインスタンスセグメンテーションメソッドは、バウンディングボックスを介してオブジェクトをキャプチャし、各バウンディングボックス領域内で個々のセグメンテーションを実行する。
提案手法は,まずオブジェクトの中心点を検出し,そこから境界ボックスパラメータが予測される。
セグメンテーションブランチは、オブジェクト特徴をガイダンスとして再利用し、同じバウンディングボックス領域内の隣のオブジェクトからターゲットオブジェクトを分離する。
論文 参考訳(メタデータ) (2021-06-14T04:35:36Z) - Robust Instance Segmentation through Reasoning about Multi-Object
Occlusion [9.536947328412198]
本稿では,隠蔽に頑健な多目的インスタンスセグメンテーションのためのディープネットワークを提案する。
私たちの研究は、神経機能アクティベーションの生成モデルを学習し、オクローダの発見に役立てています。
特に、オブジェクトクラスとそのインスタンスおよびオクルーダーセグメンテーションのフィードフォワード予測を得る。
論文 参考訳(メタデータ) (2020-12-03T17:41:55Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
複数のオブジェクトを持つ複雑なシーンを生成するレイアウト・ツー・イメージ生成法を開発した。
本手法は,シーン内のオブジェクト間の空間的関係の表現を学習し,レイアウトの忠実度の向上につながる。
本稿では,Fr'echet Inception Distanceのオブジェクト中心適応であるSceneFIDを紹介する。
論文 参考訳(メタデータ) (2020-03-16T21:40:09Z) - Object Instance Mining for Weakly Supervised Object Detection [24.021995037282394]
本稿では,オブジェクト検出の弱いエンドツーエンドのオブジェクトインスタンスマイニング(OIM)フレームワークを提案する。
OIMは、空間グラフと外観グラフに情報伝搬を導入することにより、各画像に存在する全ての可能なオブジェクトインスタンスを検知しようとする。
反復学習プロセスでは、同一クラスからの識別の少ないオブジェクトインスタンスを徐々に検出し、トレーニングに利用することができる。
論文 参考訳(メタデータ) (2020-02-04T02:11:39Z) - Instance Segmentation of Visible and Occluded Regions for Finding and
Picking Target from a Pile of Objects [25.836334764387498]
本研究では,対象物体の発見・把握が可能な物体の山から対象物を選択するロボットシステムを提案する。
既存のインスタンスセグメンテーションモデルを新しいリルックアーキテクチャで拡張し、モデルがインスタンス間の関係を明示的に学習する。
また、画像合成により、人間のアノテーションを使わずに新しいオブジェクトを処理できるシステムを構築する。
論文 参考訳(メタデータ) (2020-01-21T12:28:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。