論文の概要: Parameterized Neural Networks for Finance
- arxiv url: http://arxiv.org/abs/2304.08883v1
- Date: Tue, 18 Apr 2023 10:18:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 15:07:23.728677
- Title: Parameterized Neural Networks for Finance
- Title(参考訳): ファイナンスのためのパラメータ付きニューラルネットワーク
- Authors: Daniel Oeltz and Jan Hamaekers and Kay F. Pilz
- Abstract要約: 我々は、異なるデータサンプルの集合のモデルクラスを学ぶことができるニューラルネットワークアーキテクチャを議論し、分析する。
このアプローチを、資産運用者や銀行が直面している標準的問題の一つ、すなわちスプレッドカーブの校正に適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss and analyze a neural network architecture, that enables learning a
model class for a set of different data samples rather than just learning a
single model for a specific data sample. In this sense, it may help to reduce
the overfitting problem, since, after learning the model class over a larger
data sample consisting of such different data sets, just a few parameters need
to be adjusted for modeling a new, specific problem. After analyzing the method
theoretically and by regression examples for different one-dimensional
problems, we finally apply the approach to one of the standard problems asset
managers and banks are facing: the calibration of spread curves. The presented
results clearly show the potential that lies within this method. Furthermore,
this application is of particular interest to financial practitioners, since
nearly all asset managers and banks which are having solutions in place may
need to adapt or even change their current methodologies when ESG ratings
additionally affect the bond spreads.
- Abstract(参考訳): 特定のデータサンプルに対して単一のモデルを学ぶのではなく、異なるデータサンプルのセットでモデルクラスを学習できるニューラルネットワークアーキテクチャについて論じ、分析する。
この意味では、このような異なるデータセットからなる大きなデータサンプルでモデルクラスを学習した後、新しい特定の問題をモデル化するためにいくつかのパラメータを調整する必要があるため、オーバーフィッティングの問題を減らすのに役立ちます。
提案手法を理論的に分析し, 異なる一次元問題に対する回帰例を用いて, 最終的に, 資産運用者や銀行が直面している標準問題の一つ, 拡散曲線の校正にアプローチを適用する。
以上の結果から,本手法に内在する可能性を明らかにした。
さらに、この適用は金融関係者にとって特に関心があり、ESG格付けが債券の拡散にさらに影響を及ぼすと、ソリューションを組み込んだ資産運用者や銀行のほとんどすべてが現在の方法論を適応または変更する必要がある可能性がある。
関連論文リスト
- Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
本稿では,破滅的な記憶を解消するための不確実性を考慮したメモリベース手法を提案する。
特定の特性を持つサンプルを検索し、そのようなサンプル上でモデルを再訓練することで、このアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2024-05-29T09:29:39Z) - Towards Personalized Federated Learning via Heterogeneous Model
Reassembly [84.44268421053043]
pFedHRは、異種モデルの再組み立てを利用して、パーソナライズされたフェデレーション学習を実現するフレームワークである。
pFedHRは、動的に多様なパーソナライズされたモデルを自動生成する。
論文 参考訳(メタデータ) (2023-08-16T19:36:01Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - ASE: Anomaly Scoring Based Ensemble Learning for Imbalanced Datasets [3.214208422566496]
そこで我々は,異常検出スコアリングシステムに基づくバギングアンサンブル学習フレームワークを考案した。
我々のアンサンブル学習モデルは,ベース推定器の性能を劇的に向上させることができる。
論文 参考訳(メタデータ) (2022-03-21T07:20:41Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Mixture of basis for interpretable continual learning with distribution
shifts [1.6114012813668934]
データ分散のシフトを伴う環境での継続的な学習は、いくつかの現実世界のアプリケーションでは難しい問題である。
本稿では,この問題設定に対処するために,ベイシモデル(MoB)の混合方式を提案する。
論文 参考訳(メタデータ) (2022-01-05T22:53:15Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - MLDS: A Dataset for Weight-Space Analysis of Neural Networks [0.0]
MLDSは、注意深く制御されたパラメータを持つ何千ものトレーニングニューラルネットワークからなる新しいデータセットである。
このデータセットは、モデル-to-modelとモデル-to-training-data関係に関する新たな洞察を可能にする。
論文 参考訳(メタデータ) (2021-04-21T14:24:26Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and
Feature Selection for Financial Data Analysis [22.035287788330663]
学習軌道に基づくサンプル再重み付けとシャッフルに基づく特徴選択を利用したアンサンブルフレームワークであるDoubleEnsembleを提案する。
我々のモデルは、複雑なパターンを抽出できる幅広い基盤モデルに適用でき、金融市場の予測に過度に適合し、不安定な問題を緩和できる。
論文 参考訳(メタデータ) (2020-10-03T02:57:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。