論文の概要: METAM: Goal-Oriented Data Discovery
- arxiv url: http://arxiv.org/abs/2304.09068v1
- Date: Tue, 18 Apr 2023 15:42:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 14:14:19.130915
- Title: METAM: Goal-Oriented Data Discovery
- Title(参考訳): METAM: 目標指向データディスカバリ
- Authors: Sainyam Galhotra and Yue Gong and Raul Castro Fernandez
- Abstract要約: METAMは目標指向のフレームワークで、下流タスクを候補データセットでクエリし、フィードバックループを形成して、発見と拡張プロセスを自動的に管理する。
我々はMETAMの理論的保証を示し、それらを幅広いタスクセットで実証的に示す。
- 参考スコア(独自算出の注目度): 9.73435089036831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data is a central component of machine learning and causal inference tasks.
The availability of large amounts of data from sources such as open data
repositories, data lakes and data marketplaces creates an opportunity to
augment data and boost those tasks' performance. However, augmentation
techniques rely on a user manually discovering and shortlisting useful
candidate augmentations. Existing solutions do not leverage the synergy between
discovery and augmentation, thus under exploiting data.
In this paper, we introduce METAM, a novel goal-oriented framework that
queries the downstream task with a candidate dataset, forming a feedback loop
that automatically steers the discovery and augmentation process. To select
candidates efficiently, METAM leverages properties of the: i) data, ii) utility
function, and iii) solution set size. We show METAM's theoretical guarantees
and demonstrate those empirically on a broad set of tasks. All in all, we
demonstrate the promise of goal-oriented data discovery to modern data science
applications.
- Abstract(参考訳): データは機械学習と因果推論タスクの中心的なコンポーネントである。
オープンデータレポジトリやデータレイク、データマーケットプレースといったソースからの大量のデータの提供は、データの拡大とそれらのタスクのパフォーマンス向上の機会を生み出します。
しかし、拡張技術はユーザーが手動で有用な候補追加を発見・短縮することに依存している。
既存のソリューションは発見と拡張の相乗効果を活用せず、データを利用する。
本稿では,下流タスクと候補データセットを問合せする新たな目標指向フレームワークであるMETAMを紹介し,発見・拡張プロセスを自動的に制御するフィードバックループを形成する。
効率よく候補を選択するために、METAMは以下の特性を利用する。
i) データ
二 実用機能及び実用機能
三 ソリューションセットのサイズ
我々はMETAMの理論的保証を示し、それらを幅広いタスクセットで実証的に示す。
全体として、近代データサイエンスアプリケーションにおける目標指向データディスカバリの可能性を実証する。
関連論文リスト
- Capturing and Anticipating User Intents in Data Analytics via Knowledge Graphs [0.061446808540639365]
この研究は、人間中心の複雑な分析を捉えるための基本的なフレームワークとして、知識グラフ(KG)の使用について検討する。
生成されたKGに格納されたデータは、これらのシステムと対話するユーザーに補助(例えばレコメンデーション)を提供するために利用される。
論文 参考訳(メタデータ) (2024-11-01T20:45:23Z) - Metadata-based Data Exploration with Retrieval-Augmented Generation for Large Language Models [3.7685718201378746]
本研究では、メタデータに基づくデータ発見を強化するために、レトリーバル拡張生成(RAG)という形式を用いた新しいデータ探索アーキテクチャを提案する。
提案フレームワークは異種データソース間の意味的類似性を評価するための新しい手法を提供する。
論文 参考訳(メタデータ) (2024-10-05T17:11:37Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - OpenDataLab: Empowering General Artificial Intelligence with Open Datasets [53.22840149601411]
本稿では,多様なデータソース間のギャップと統一データ処理の必要性を埋めるプラットフォームであるOpenDataLabを紹介する。
OpenDataLabは、幅広いオープンソースのAIデータセットを統合し、インテリジェントクエリと高速ダウンロードサービスを通じて、データ取得効率を向上させる。
我々は,OpenDataLabが人工知能(AGI)の研究を大幅に促進し,関連するAI分野の進歩を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-04T10:42:01Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。