A Deep Learning Framework for Traffic Data Imputation Considering
Spatiotemporal Dependencies
- URL: http://arxiv.org/abs/2304.09182v1
- Date: Tue, 18 Apr 2023 07:13:52 GMT
- Title: A Deep Learning Framework for Traffic Data Imputation Considering
Spatiotemporal Dependencies
- Authors: Li Jiang, Ting Zhang, Qiruyi Zuo, Chenyu Tian, George P. Chan, Wai Kin
(Victor) Chan
- Abstract summary: Imputation of S.temporal data is quite difficult due to complexity of dependencies in the traffic network.
Existing approaches mostly only capture the temporal dependencies in time series or static spatial dependencies.
They fail directly to model the S.temporal dependencies representation ability of the models.
- Score: 7.835274806604221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatiotemporal (ST) data collected by sensors can be represented as
multi-variate time series, which is a sequence of data points listed in an
order of time. Despite the vast amount of useful information, the ST data
usually suffer from the issue of missing or incomplete data, which also limits
its applications. Imputation is one viable solution and is often used to
prepossess the data for further applications. However, in practice, n practice,
spatiotemporal data imputation is quite difficult due to the complexity of
spatiotemporal dependencies with dynamic changes in the traffic network and is
a crucial prepossessing task for further applications. Existing approaches
mostly only capture the temporal dependencies in time series or static spatial
dependencies. They fail to directly model the spatiotemporal dependencies, and
the representation ability of the models is relatively limited.
Related papers
- Recent Trends in Modelling the Continuous Time Series using Deep Learning: A Survey [0.18434042562191813]
Continuous-time series is essential for different modern application areas, e.g. healthcare, automobile, energy, finance, Internet of things (IoT)
This paper has described the general problem domain of time series and reviewed the challenges of modelling the continuous time series.
arXiv Detail & Related papers (2024-09-13T14:19:44Z) - GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing [21.980379175333443]
We propose a novel Graph Interpolation Attention Recursive Network (named GinAR) to model the spatial-temporal dependencies over the limited collected data for forecasting.
In GinAR, it consists of two key components, that is, attention and adaptive graph convolution.
Experiments conducted on five real-world datasets demonstrate that GinAR outperforms 11 SOTA baselines, and even when 90% of variables are missing, it can still accurately predict the future values of all variables.
arXiv Detail & Related papers (2024-05-18T16:42:44Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Training for the Future: A Simple Gradient Interpolation Loss to
Generalize Along Time [26.261277497201565]
In several real world applications, machine learning models are deployed to make predictions on data whose distribution changes gradually along time.
We propose a simple method that starts with a model with time-sensitive parameters but regularizes its temporal complexity using a Gradient Interpolation (GI) loss.
arXiv Detail & Related papers (2021-08-15T11:20:10Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
arXiv Detail & Related papers (2021-07-31T17:47:10Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Time Series Data Imputation: A Survey on Deep Learning Approaches [4.4458738910060775]
Time series data imputation is a well-studied problem with different categories of methods.
Time series methods based on deep learning have made progress with the usage of models like RNN.
We will review and discuss their model architectures, their pros and cons as well as their effects to show the development of the time series imputation methods.
arXiv Detail & Related papers (2020-11-23T11:57:27Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.