Multivariate Time Series Imputation by Graph Neural Networks
- URL: http://arxiv.org/abs/2108.00298v1
- Date: Sat, 31 Jul 2021 17:47:10 GMT
- Title: Multivariate Time Series Imputation by Graph Neural Networks
- Authors: Andrea Cini, Ivan Marisca, Cesare Alippi
- Abstract summary: We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
- Score: 13.308026049048717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dealing with missing values and incomplete time series is a labor-intensive
and time-consuming inevitable task when handling data coming from real-world
applications. Effective spatio-temporal representations would allow imputation
methods to reconstruct missing temporal data by exploiting information coming
from sensors at different locations. However, standard methods fall short in
capturing the nonlinear time and space dependencies existing within networks of
interconnected sensors and do not take full advantage of the available - and
often strong - relational information. Notably, most of state-of-the-art
imputation methods based on deep learning do not explicitly model relational
aspects and, in any case, do not exploit processing frameworks able to
adequately represent structured spatio-temporal data. Conversely, graph neural
networks have recently surged in popularity as both expressive and scalable
tools for processing sequential data with relational inductive biases. In this
work, we present the first assessment of graph neural networks in the context
of multivariate time series imputation. In particular, we introduce a novel
graph neural network architecture, named GRIL, which aims at reconstructing
missing data in the different channels of a multivariate time series by
learning spatial-temporal representations through message passing. Preliminary
empirical results show that our model outperforms state-of-the-art methods in
the imputation task on relevant benchmarks with mean absolute error
improvements often higher than 20%.
Related papers
- An End-to-End Model for Time Series Classification In the Presence of Missing Values [25.129396459385873]
Time series classification with missing data is a prevalent issue in time series analysis.
This study proposes an end-to-end neural network that unifies data imputation and representation learning within a single framework.
arXiv Detail & Related papers (2024-08-11T19:39:12Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
Methods for machine learning on temporal networks generally exhibit at least one of two limitations.
We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions.
Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.
arXiv Detail & Related papers (2022-09-30T18:24:13Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
Graph neural networks (GNNs) are often the core component of the forecasting architecture.
In most pretemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph.
We propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics.
arXiv Detail & Related papers (2022-09-14T09:47:38Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Deep Dynamic Effective Connectivity Estimation from Multivariate Time
Series [0.0]
We develop dynamic effective connectivity estimation via neural network training (DECENNT)
DECENNT outperforms state-of-the-art (SOTA) methods on five different tasks and infers interpretable task-specific dynamic graphs.
arXiv Detail & Related papers (2022-02-04T21:14:21Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.