論文の概要: Early Detection of Parkinson's Disease using Motor Symptoms and Machine
Learning
- arxiv url: http://arxiv.org/abs/2304.09245v1
- Date: Tue, 18 Apr 2023 19:13:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 16:25:26.801007
- Title: Early Detection of Parkinson's Disease using Motor Symptoms and Machine
Learning
- Title(参考訳): 運動症状と機械学習を用いたパーキンソン病の早期診断
- Authors: Poojaa C and John Sahaya Rani Alex
- Abstract要約: 本研究の目的は、運動や歩行関連パラメータなどの早期に発症する一般的な症状に焦点を当て、経済的かつ堅牢なウェアラブルデバイスの実現可能性に関する定量的分析に到達することである。
Parkinson's Progression Markers Initiative (PPMI)のサブセットであるPPMI Gaitデータセットが機能選択に使用されている。
その後、パーキンソン症候群の早期発見のために、91.9%の精度でリアルタイムデータをテストするために、特定された影響力のある特徴が使用されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parkinson's disease (PD) has been found to affect 1 out of every 1000 people,
being more inclined towards the population above 60 years. Leveraging
wearable-systems to find accurate biomarkers for diagnosis has become the need
of the hour, especially for a neurodegenerative condition like Parkinson's.
This work aims at focusing on early-occurring, common symptoms, such as motor
and gait related parameters to arrive at a quantitative analysis on the
feasibility of an economical and a robust wearable device. A subset of the
Parkinson's Progression Markers Initiative (PPMI), PPMI Gait dataset has been
utilised for feature-selection after a thorough analysis with various Machine
Learning algorithms. Identified influential features has then been used to test
real-time data for early detection of Parkinson Syndrome, with a model accuracy
of 91.9%
- Abstract(参考訳): パーキンソン病(pd)は1000人中1人に影響を与えており、60歳以上の人口に傾向が強い。
診断のための正確なバイオマーカーを見つけるためにウェアラブルシステムを活用することは、特にパーキンソン病のような神経変性疾患のために時間を必要としている。
本研究の目的は、経済的かつ堅牢なウェアラブルデバイスの実現可能性に関する定量的分析に到達するための、運動や歩行関連パラメータなどの早期発生の一般的な症状に焦点を当てることである。
Parkinson's Progression Markers Initiative (PPMI)のサブセットであるPPMI Gaitデータセットは、さまざまな機械学習アルゴリズムによる徹底的な分析の後、機能選択に使用されている。
その後、パーキンソン病の早期発見のためのリアルタイムデータをテストするために重要な特徴が特定され、モデルの精度は91.9%である。
関連論文リスト
- Determining the severity of Parkinson's disease in patients using a
multi task neural network [0.7499722271664147]
パーキンソン病は進行すると容易に診断できるが、早期の診断は困難である。
本研究では,音声分析から容易に抽出できる変数の集合を解析する。
99.15%の成功率は、パーキンソン病またはパーキンソン病以外の重度のパーキンソン病に罹患しているかどうかを予測する問題で達成されている。
論文 参考訳(メタデータ) (2024-02-08T08:55:34Z) - Deep Learning for Time Series Classification of Parkinson's Disease Eye
Tracking Data [0.0]
我々は、現在最先端のディープラーニングアルゴリズムを用いて、ササード実験による視線追跡データを用いて、パーキンソン病の分類を行う。
モデルが分類課題を学習し、未知の対象に一般化できることが判明した。
論文 参考訳(メタデータ) (2023-11-28T00:03:18Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
本研究は早期疾患予測の手段として, PD患者の声質変化の可能性について検討した。
XGBoost、LightGBM、Baging、AdaBoost、Support Vector Machineなど、さまざまな高度な機械学習アルゴリズムを活用する。
LightGBMは、100%の感度と94.43%の特異性を示し、他の機械学習アルゴリズムの精度とAUCスコアを上回った。
論文 参考訳(メタデータ) (2023-11-09T15:21:10Z) - An experimental study for early diagnosing Parkinson's disease using
machine learning [1.534667887016089]
この実験では、パーキンソン病の早期発見を自動化するために機械学習技術を使用した。
本研究では,130人の個人を対象とした公開データセットを用いたMLモデルを開発した。
PDとRBDの分類では100%の精度が得られ、PDとHCの分類では92%の精度が得られた。
論文 参考訳(メタデータ) (2023-10-20T16:59:18Z) - Deep Learning Predicts Prevalent and Incident Parkinson's Disease From
UK Biobank Fundus Imaging [13.132022790511005]
パーキンソン病は世界最速の神経疾患である。
現在の診断法は高価で、可用性は限られている。
我々は、パーキンソン病の診断検査として、しばしば脳への窓と呼ばれる網膜基底像を強調した。
論文 参考訳(メタデータ) (2023-02-13T22:30:16Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
われわれはスマートウォッチとスマートフォンを使って、PD患者、DD、HCを含む504人の参加者のマルチモーダルデータを収集した。
様々なモダリティを組み合わせることで,分類精度が向上し,さらにPDクラスタが発見された。
論文 参考訳(メタデータ) (2022-05-12T08:59:57Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
パーキンソン病(PD)研究における技術ベースアセスメントの実施状況について報告した。
本研究は、両手同期スマートウォッチ測定におけるPDサンプルサイズとして最大である。
論文 参考訳(メタデータ) (2022-05-11T09:12:59Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - Vision-based Estimation of MDS-UPDRS Gait Scores for Assessing
Parkinson's Disease Motor Severity [39.51722822896373]
パーキンソン病(英: Parkinson's disease、PD)は、運動機能に影響を及ぼす進行性神経疾患である。
PD障害の身体的重症度は、運動障害学会統一パーキンソン病評価尺度によって定量化することができる。
MDS-UPDRSの歩行スコアに基づいて、個人が撮影する非侵襲的な映像を観察し、3次元の身体骨格を抽出し、時間を通して追跡し、運動を分類するコンピュータビジョンベースモデルを提案する。
論文 参考訳(メタデータ) (2020-07-17T11:49:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。