Dynamical beats of short pulses in waveguide QED
- URL: http://arxiv.org/abs/2304.09277v1
- Date: Tue, 18 Apr 2023 20:32:16 GMT
- Title: Dynamical beats of short pulses in waveguide QED
- Authors: Dianqiang Su, Yuan Jiang, Silvia Cardenas-Lopez, Ana Asenjo-Garcia,
Pablo Solano, Luis A. Orozco, and Yanting Zhao
- Abstract summary: We study temporal oscillations, known as dynamical beats, developed by a propagating pulse due to its interaction with a collective medium of $133$Cs atoms randomly captured by a nanofiber-based optical lattice.
The results deepen our understanding of light propagation in waveguide QED, essential in time-frequency analysis and light engineering for probing, manipulating, and exploiting many-body quantum systems.
- Score: 3.538171534407868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study temporal oscillations, known as dynamical beats, developed by a
propagating pulse due to its interaction with a near-resonant collective medium
of $^{133}$Cs atoms randomly captured by a nanofiber-based optical lattice. A
phenomenological theory provides an intuitive explanation and quantitative
predictions, which are improved by an input-output theory considering
multiple-scattering between the atoms. The results deepen our understanding of
light propagation in waveguide QED, essential in time-frequency analysis and
light engineering for probing, manipulating, and exploiting many-body quantum
systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Spatial Addressing of Qubits in a Dispersive Waveguide [0.0]
We use dispersion to achieve spatial addressing of superconducting qubits separated by a sub-wavelength distance within a microwave waveguide.
This experiment emphasizes the importance of dispersion in the design and analysis of quantum experiments.
arXiv Detail & Related papers (2024-07-15T11:08:34Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Multiband and array effects in matter-wave-based waveguide QED [0.0]
Recent experiments on spontaneous emission of atomic matter waves open a new window into the behavior of quantum emitters coupled to a waveguide.
We develop an approach based on infinite products to study this system theoretically.
arXiv Detail & Related papers (2021-08-24T20:12:29Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - An analytical theory of CEP-dependent coherence driven by few-cycle
pulses [28.971848801529205]
We present an analytical theory that describes a two-level atom driven by a far-off-resonance, few-cycle square pulse.
Despite its mathematical simplicity, the relation is able to capture some of the key features of the interaction.
The theory can potentially offer a general guidance in future studies of CEP-sensitive quantum coherence.
arXiv Detail & Related papers (2021-01-13T05:16:12Z) - Orientational quantum revivals induced by a single-cycle terahertz pulse [2.4298571485464913]
We present a combined analytical and numerical study on the generation of orientational quantum revivals (OQRs) using a single-cycle THz pulse.
As a proof of principle, we examine the scheme in the linear polar molecule HCN with experimentally accessible pulse parameters.
To visualize the involved quantum mechanism, we derive a three-state spectroscopic model using the Magnus expansion of the time-evolution operator.
arXiv Detail & Related papers (2020-09-26T05:14:50Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.