Orientational quantum revivals induced by a single-cycle terahertz pulse
- URL: http://arxiv.org/abs/2009.12520v1
- Date: Sat, 26 Sep 2020 05:14:50 GMT
- Title: Orientational quantum revivals induced by a single-cycle terahertz pulse
- Authors: Chuan-Cun Shu, Qian-Qian Hong, Yu Guo, Niels E. Henriksen
- Abstract summary: We present a combined analytical and numerical study on the generation of orientational quantum revivals (OQRs) using a single-cycle THz pulse.
As a proof of principle, we examine the scheme in the linear polar molecule HCN with experimentally accessible pulse parameters.
To visualize the involved quantum mechanism, we derive a three-state spectroscopic model using the Magnus expansion of the time-evolution operator.
- Score: 2.4298571485464913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The phenomenon of quantum revivals resulting from the self-interference of
wave packets has been observed in several quantum systems and utilized widely
in spectroscopic applications. Here, we present a combined analytical and
numerical study on the generation of orientational quantum revivals (OQRs)
exclusively using a single-cycle THz pulse. As a proof of principle, we examine
the scheme in the linear polar molecule HCN with experimentally accessible
pulse parameters and obtain strong field-free OQR without requiring the
condition of the sudden-impact limit. To visualize the involved quantum
mechanism, we derive a three-state model using the Magnus expansion of the
time-evolution operator. Interestingly, the THz pulse interaction with the
electric-dipole moment can activate direct multiphoton processes, leading to
OQR enhancements beyond that induced by a rotational ladder-climbing mechanism
from the rotational ground state. This work provides an explicit and feasible
approach toward quantum control of molecular rotation, which is at the core of
current research endeavors with potential applications in atomic and molecular
physics, photochemistry, and quantum information science.
Related papers
- Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra [0.37187295985559027]
We introduce a framework for solving hydrogen-bond systems and more generic chemical dynamics problems using quantum logic.
We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer.
Our approach introduces a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules.
arXiv Detail & Related papers (2022-04-18T21:42:54Z) - Semi-empirical Quantum Optics for Mid-Infrared Molecular Nanophotonics [4.418727776163473]
We develop a semi-empirical quantum optics approach to describe light-matter interaction in systems driven by mid-IR femtosecond laser pulses.
We propose the possibility of transferring the natural anharmonicity of molecular vibrational levels to the resonator near-field in the weak coupling regime.
arXiv Detail & Related papers (2021-10-14T14:02:19Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.