Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising
- URL: http://arxiv.org/abs/2304.09373v1
- Date: Wed, 19 Apr 2023 02:00:21 GMT
- Title: Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising
- Authors: Haodong Pan, Feng Gao, Junyu Dong, Qian Du
- Abstract summary: We propose a novel solution to investigate the HSI denoising using a Multi-scale Adaptive Fusion Network (MAFNet)
The proposed MAFNet has achieved better denoising performance than other state-of-the-art techniques.
- Score: 35.491878332394265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Removing the noise and improving the visual quality of hyperspectral images
(HSIs) is challenging in academia and industry. Great efforts have been made to
leverage local, global or spectral context information for HSI denoising.
However, existing methods still have limitations in feature interaction
exploitation among multiple scales and rich spectral structure preservation. In
view of this, we propose a novel solution to investigate the HSI denoising
using a Multi-scale Adaptive Fusion Network (MAFNet), which can learn the
complex nonlinear mapping between clean and noisy HSI. Two key components
contribute to improving the hyperspectral image denoising: A progressively
multiscale information aggregation network and a co-attention fusion module.
Specifically, we first generate a set of multiscale images and feed them into a
coarse-fusion network to exploit the contextual texture correlation.
Thereafter, a fine fusion network is followed to exchange the information
across the parallel multiscale subnetworks. Furthermore, we design a
co-attention fusion module to adaptively emphasize informative features from
different scales, and thereby enhance the discriminative learning capability
for denoising. Extensive experiments on synthetic and real HSI datasets
demonstrate that the proposed MAFNet has achieved better denoising performance
than other state-of-the-art techniques. Our codes are available at
\verb'https://github.com/summitgao/MAFNet'.
Related papers
- Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - A cross Transformer for image denoising [83.68175077524111]
We propose a cross Transformer denoising CNN (CTNet) with a serial block (SB), a parallel block (PB), and a residual block (RB)
CTNet is superior to some popular denoising methods in terms of real and synthetic image denoising.
arXiv Detail & Related papers (2023-10-16T13:53:19Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
We introduce a self-modulating convolutional neural network which utilizes correlated spectral and spatial information.
At the core of the model lies a novel block, which allows the network to transform the features in an adaptive manner based on the adjacent spectral data.
Experimental analysis on both synthetic and real data shows that the proposed SM-CNN outperforms other state-of-the-art HSI denoising methods.
arXiv Detail & Related papers (2023-09-15T06:57:43Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - SSCAN: A Spatial-spectral Cross Attention Network for Hyperspectral
Image Denoising [12.873607414761093]
We propose a novel HSI denoising network, termed SSCAN, that combines group convolutions and attention modules.
We propose a spectral-spatial attention block (SSAB) to exploit the spatial and spectral information in hyperspectral images in an effective manner.
The experimental results indicate that the proposed SSCAN outperforms several state-of-the-art HSI denoising algorithms.
arXiv Detail & Related papers (2021-05-23T14:36:17Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.