論文の概要: ASM: Adaptive Skinning Model for High-Quality 3D Face Modeling
- arxiv url: http://arxiv.org/abs/2304.09423v3
- Date: Sun, 8 Oct 2023 09:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 13:37:06.012859
- Title: ASM: Adaptive Skinning Model for High-Quality 3D Face Modeling
- Title(参考訳): ASM:高画質3次元顔モデリングのための適応スキニングモデル
- Authors: Kai Yang, Hong Shang, Tianyang Shi, Xinghan Chen, Jingkai Zhou,
Zhongqian Sun and Wei Yang
- Abstract要約: マルチビュー・アンキャリブレーション画像による再構成では,キャパシティがより高められた新しいモデルが要求される。
適応スキニングモデル (Adaptive Skinning Model, ASM) を提案する。
本研究は,パラメトリック顔モデル研究の新たな方向性を開拓し,多視点再構成の今後の研究を促進するものである。
- 参考スコア(独自算出の注目度): 11.885382595302751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The research fields of parametric face model and 3D face reconstruction have
been extensively studied. However, a critical question remains unanswered: how
to tailor the face model for specific reconstruction settings. We argue that
reconstruction with multi-view uncalibrated images demands a new model with
stronger capacity. Our study shifts attention from data-dependent 3D Morphable
Models (3DMM) to an understudied human-designed skinning model. We propose
Adaptive Skinning Model (ASM), which redefines the skinning model with more
compact and fully tunable parameters. With extensive experiments, we
demonstrate that ASM achieves significantly improved capacity than 3DMM, with
the additional advantage of model size and easy implementation for new
topology. We achieve state-of-the-art performance with ASM for multi-view
reconstruction on the Florence MICC Coop benchmark. Our quantitative analysis
demonstrates the importance of a high-capacity model for fully exploiting
abundant information from multi-view input in reconstruction. Furthermore, our
model with physical-semantic parameters can be directly utilized for real-world
applications, such as in-game avatar creation. As a result, our work opens up
new research direction for parametric face model and facilitates future
research on multi-view reconstruction.
- Abstract(参考訳): パラメトリック顔モデルと3次元顔再構成の研究分野を幅広く研究している。
しかし、重要な疑問が残る: 特定の再構成設定のために顔モデルをどう調整するか。
マルチビュー・アンキャリブレーション画像による再構成は,より強力なキャパシティを持つ新しいモデルを必要とする。
本研究では,データ依存型3次元形態モデル(3DMM)から人体設計スキンモデルへ注目を移す。
本稿では,よりコンパクトで完全に調整可能なパラメータでスキンモデルを再定義する適応スキンモデル(asm)を提案する。
大規模な実験により, ASMは3DMMよりも大幅に向上し, モデルサイズと新しいトポロジーの実装が容易になった。
フィレンツェMICCクープベンチマークにおける多視点再構成のためのASMによる最先端性能を実現する。
定量的解析により,多視点入力からの豊富な情報を十分に活用するための高容量モデルの重要性が示された。
さらに,本モデルでは,ゲーム内アバター生成などの実世界のアプリケーションに直接利用することができる。
その結果,パラメトリックフェースモデルの新たな研究方向性が開かれ,多視点再構築の今後の研究が促進される。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - PGAHum: Prior-Guided Geometry and Appearance Learning for High-Fidelity Animatable Human Reconstruction [9.231326291897817]
我々はPGAHumを紹介した。PGAHumは、高忠実でアニマタブルな人体再構成のための、事前ガイダンス付き幾何学および外観学習フレームワークである。
我々はPGAHumの3つの主要モジュールにおける3次元人体前駆体を徹底的に利用し、複雑な細部と見えないポーズのフォトリアリスティックなビュー合成による高品質な幾何再構成を実現する。
論文 参考訳(メタデータ) (2024-04-22T04:22:30Z) - VRMM: A Volumetric Relightable Morphable Head Model [55.21098471673929]
本稿では,3次元顔モデリングに先立って,新しい容積・パラメトリック顔モデルであるVRMMを紹介する。
我々のフレームワークは、アイデンティティ、表現、照明の潜在空間を、低次元の表現に効率的に切り離し、エンコードする。
我々は,アバター生成,顔の再構成,アニメーションなどの様々な応用を通じて,VRMMの汎用性と有効性を示す。
論文 参考訳(メタデータ) (2024-02-06T15:55:46Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - imGHUM: Implicit Generative Models of 3D Human Shape and Articulated
Pose [42.4185273307021]
人間の3次元形状とポーズの合成モデルImGHUMについて述べる。
人間の全身をゼロレベルの関数として暗黙的にモデル化し、明示的なテンプレートメッシュを使用しない。
論文 参考訳(メタデータ) (2021-08-24T17:08:28Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。