Maybenot: A Framework for Traffic Analysis Defenses
- URL: http://arxiv.org/abs/2304.09510v2
- Date: Fri, 27 Sep 2024 12:06:15 GMT
- Title: Maybenot: A Framework for Traffic Analysis Defenses
- Authors: Tobias Pulls, Ethan Witwer,
- Abstract summary: We present Maybenot, a framework for traffic analysis defenses.
Maybenot is designed to be easy to use and integrate into existing end-to-end encrypted protocols.
- Score: 1.6114012813668932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: End-to-end encryption is a powerful tool for protecting the privacy of Internet users. Together with the increasing use of technologies such as Tor, VPNs, and encrypted messaging, it is becoming increasingly difficult for network adversaries to monitor and censor Internet traffic. One remaining avenue for adversaries is traffic analysis: the analysis of patterns in encrypted traffic to infer information about the users and their activities. Recent improvements using deep learning have made traffic analysis attacks more effective than ever before. We present Maybenot, a framework for traffic analysis defenses. Maybenot is designed to be easy to use and integrate into existing end-to-end encrypted protocols. It is implemented in the Rust programming language as a crate (library), together with a simulator to further the development of defenses. Defenses in Maybenot are expressed as probabilistic state machines that schedule actions to inject padding or block outgoing traffic. Maybenot is an evolution from the Tor Circuit Padding Framework by Perry and Kadianakis, designed to support a wide range of protocols and use cases.
Related papers
- A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Feature Analysis of Encrypted Malicious Traffic [3.3148826359547514]
In recent years there has been a dramatic increase in the number of malware attacks that use encrypted HTTP traffic for self-propagation or communication.
Antivirus software and firewalls typically will not have access to encryption keys, and therefore direct detection of encrypted data is unlikely to succeed.
Previous work has shown that traffic analysis can provide indications of malicious intent, even in cases where the underlying data remains encrypted.
arXiv Detail & Related papers (2023-12-06T12:04:28Z) - The Key to Deobfuscation is Pattern of Life, not Overcoming Encryption [0.7124736158080939]
We present a novel methodology that is effective at deobfuscating sources by synthesizing measurements from key locations along protocol transaction paths.
Our approach links online personas with their origin IP addresses based on a Pattern of Life (PoL) analysis.
We show that, when monitoring in the correct places on the Internet, DNS over HTTPS (DoH) and DNS over TLS (DoT) can be deobfuscated with up to 100% accuracy.
arXiv Detail & Related papers (2023-10-04T02:34:29Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Feature Mining for Encrypted Malicious Traffic Detection with Deep
Learning and Other Machine Learning Algorithms [7.404682407709988]
The popularity of encryption mechanisms poses a great challenge to malicious traffic detection.
Traditional detection techniques cannot work without the decryption of encrypted traffic.
In this paper, we provide an in-depth analysis of traffic features and compare different state-of-the-art traffic feature creation approaches.
We propose a novel concept for encrypted traffic feature which is specifically designed for encrypted malicious traffic analysis.
arXiv Detail & Related papers (2023-04-07T15:25:36Z) - Efficient and Low Overhead Website Fingerprinting Attacks and Defenses
based on TCP/IP Traffic [16.6602652644935]
Website fingerprinting attacks based on machine learning and deep learning tend to use the most typical features to achieve a satisfactory performance of attacking rate.
To defend against such attacks, random packet defense (RPD) with a high cost of excessive network overhead is usually applied.
We propose a filter-assisted attack against RPD, which can filter out the injected noises using the statistical characteristics of TCP/IP traffic.
We further improve the list-based defense by a traffic splitting mechanism, which can combat the mentioned attacks as well as save a considerable amount of network overhead.
arXiv Detail & Related papers (2023-02-27T13:45:15Z) - BackdoorBox: A Python Toolbox for Backdoor Learning [67.53987387581222]
This Python toolbox implements representative and advanced backdoor attacks and defenses.
It allows researchers and developers to easily implement and compare different methods on benchmark or their local datasets.
arXiv Detail & Related papers (2023-02-01T09:45:42Z) - Machine Learning for Encrypted Malicious Traffic Detection: Approaches,
Datasets and Comparative Study [6.267890584151111]
In post-COVID-19 environment, malicious traffic encryption is growing rapidly.
We formulate a universal framework of machine learning based encrypted malicious traffic detection techniques.
We implement and compare 10 encrypted malicious traffic detection algorithms.
arXiv Detail & Related papers (2022-03-17T14:00:55Z) - Prototype-supervised Adversarial Network for Targeted Attack of Deep
Hashing [65.32148145602865]
deep hashing networks are vulnerable to adversarial examples.
We propose a novel prototype-supervised adversarial network (ProS-GAN)
To the best of our knowledge, this is the first generation-based method to attack deep hashing networks.
arXiv Detail & Related papers (2021-05-17T00:31:37Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.