Hiding in Plain Sight: An IoT Traffic Camouflage Framework for Enhanced Privacy
- URL: http://arxiv.org/abs/2501.15395v1
- Date: Sun, 26 Jan 2025 04:33:44 GMT
- Title: Hiding in Plain Sight: An IoT Traffic Camouflage Framework for Enhanced Privacy
- Authors: Daniel Adu Worae, Spyridon Mastorakis,
- Abstract summary: Existing single-technique obfuscation methods, such as packet padding, often fall short in dynamic environments like smart homes.
This paper introduces a multi-technique obfuscation framework designed to enhance privacy by disrupting traffic analysis.
- Score: 2.0257616108612373
- License:
- Abstract: The rapid growth of Internet of Things (IoT) devices has introduced significant challenges to privacy, particularly as network traffic analysis techniques evolve. While encryption protects data content, traffic attributes such as packet size and timing can reveal sensitive information about users and devices. Existing single-technique obfuscation methods, such as packet padding, often fall short in dynamic environments like smart homes due to their predictability, making them vulnerable to machine learning-based attacks. This paper introduces a multi-technique obfuscation framework designed to enhance privacy by disrupting traffic analysis. The framework leverages six techniques-Padding, Padding with XORing, Padding with Shifting, Constant Size Padding, Fragmentation, and Delay Randomization-to obscure traffic patterns effectively. Evaluations on three public datasets demonstrate significant reductions in classifier performance metrics, including accuracy, precision, recall, and F1 score. We assess the framework's robustness against adversarial tactics by retraining and fine-tuning neural network classifiers on obfuscated traffic. The results reveal a notable degradation in classifier performance, underscoring the framework's resilience against adaptive attacks. Furthermore, we evaluate communication and system performance, showing that higher obfuscation levels enhance privacy but may increase latency and communication overhead.
Related papers
- AdvSwap: Covert Adversarial Perturbation with High Frequency Info-swapping for Autonomous Driving Perception [14.326474757036925]
This paper introduces a novel adversarial attack method, AdvSwap, which creatively utilizes wavelet-based high-frequency information swapping.
The scheme effectively removes the original label data and incorporates the guidance image data, producing concealed and robust adversarial samples.
The generates adversarial samples are also difficult to perceive by humans and algorithms.
arXiv Detail & Related papers (2025-02-12T13:05:35Z) - MIETT: Multi-Instance Encrypted Traffic Transformer for Encrypted Traffic Classification [59.96233305733875]
Classifying traffic is essential for detecting security threats and optimizing network management.
We propose a Multi-Instance Encrypted Traffic Transformer (MIETT) to capture both token-level and packet-level relationships.
MIETT achieves results across five datasets, demonstrating its effectiveness in classifying encrypted traffic and understanding complex network behaviors.
arXiv Detail & Related papers (2024-12-19T12:52:53Z) - Lens: A Foundation Model for Network Traffic [19.3652490585798]
Lens is a foundation model for network traffic that leverages the T5 architecture to learn the pre-trained representations from large-scale unlabeled data.
We design a novel loss that combines three distinct tasks: Masked Span Prediction (MSP), Packet Order Prediction (POP), and Homologous Traffic Prediction (HTP)
arXiv Detail & Related papers (2024-02-06T02:45:13Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
Object detection is one of the key technologies in the Internet of Vehicles (IoV)
Current object detection methods are mostly based on centralized deep training, that is, the sensitive data obtained by edge devices need to be uploaded to the server.
We propose a federated learning-based framework, where well-trained local models are shared in the central server.
arXiv Detail & Related papers (2023-09-07T08:58:41Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adversarial Attributes (Adv-Attribute) is designed to generate inconspicuous and transferable attacks on face recognition.
Experiments on the FFHQ and CelebA-HQ datasets show that the proposed Adv-Attribute method achieves the state-of-the-art attacking success rates.
arXiv Detail & Related papers (2022-10-13T09:56:36Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z) - Sardino: Ultra-Fast Dynamic Ensemble for Secure Visual Sensing at Mobile
Edge [7.85758401939372]
Adversarial example attack endangers the mobile edge systems such as vehicles and drones that adopt deep neural networks for visual sensing.
This paper presents em Sardino, an active and dynamic defense approach that renews the inference ensemble at run time to develop security against the adaptive adversary.
arXiv Detail & Related papers (2022-04-18T06:54:48Z) - Machine Learning for Encrypted Malicious Traffic Detection: Approaches,
Datasets and Comparative Study [6.267890584151111]
In post-COVID-19 environment, malicious traffic encryption is growing rapidly.
We formulate a universal framework of machine learning based encrypted malicious traffic detection techniques.
We implement and compare 10 encrypted malicious traffic detection algorithms.
arXiv Detail & Related papers (2022-03-17T14:00:55Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
The existence of real-world adversarial examples (commonly in the form of patches) poses a serious threat for the use of deep learning models in safety-critical computer vision tasks.
This paper presents an evaluation of the robustness of semantic segmentation models when attacked with different types of adversarial patches.
A novel loss function is proposed to improve the capabilities of attackers in inducing a misclassification of pixels.
arXiv Detail & Related papers (2022-01-05T22:33:43Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.