The role of dephasing for dark state coupling in a molecular
Tavis-Cummings model
- URL: http://arxiv.org/abs/2304.09583v1
- Date: Wed, 19 Apr 2023 11:43:05 GMT
- Title: The role of dephasing for dark state coupling in a molecular
Tavis-Cummings model
- Authors: Eric Davidsson, Markus Kowalewski
- Abstract summary: We investigate the influence of non-unitary processes on the dark state dynamics in the Tavis--Cummings model.
Our simulations show that the rate of the pure dephasing, as well as the number of particles, has a significant influence on the dark state population.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Collective coupling of an ensemble of particles to a light field is commonly
described by the Tavis--Cummings model. This model includes numerous
eigenstates which are optically decoupled from the optically bright polariton
states. To access these dark states requires breaking the symmetry in the
corresponding Hamiltonian. In this paper, we investigate the influence of
non-unitary processes on the dark state dynamics in molecular Tavis--Cummings
model. The system is modelled with a Lindblad equation that includes pure
dephasing, as they would be caused by weak interactions with an environment,
and photon decay. Our simulations show that the rate of the pure dephasing, as
well as the number of particles, has a significant influence on the dark state
population.
Related papers
- Toward collective chemistry by strong light-matter coupling [0.0]
Theory is constructed by a pseudoparticle representation of the molecular Hamiltonians, mapping the polaritonic Hamiltonian into a coupled fermion-boson model under particle number constraints.
Numerical demonstrations are shown for the driven Tavis-Cummings model, which shows an excellent agreement with exact results.
arXiv Detail & Related papers (2023-06-15T08:34:28Z) - Dynamics of polaron formation in 1D Bose gases in the strong-coupling
regime [0.0]
We discuss the dynamics of the formation of a Bose polaron when an impurity is injected into a weakly interacting Bose condensate.
We use Truncated Wigner simulations to show under what conditions the influence of quantum fluctuations is small.
arXiv Detail & Related papers (2023-04-27T19:55:18Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Engineering random spin models with atoms in a high-finesse cavity [8.787025970442755]
We realise an all-to-all interacting, disordered spin system by subjecting an atomic cloud in a cavity to a controllable light shift.
By probing the low-energy excitations of the system, we explore the competition of interactions with disorder across a broad parameter range.
Results present significant steps towards freely programmable cavity-mediated interactions for the design of arbitrary spin Hamiltonians.
arXiv Detail & Related papers (2022-08-19T16:13:58Z) - Cavity Induced Collective Behavior in the Polaritonic Ground State [0.0]
We investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous quantum cavity field.
The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles.
The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons.
arXiv Detail & Related papers (2022-07-07T17:09:57Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Critical Theory for the Breakdown of Photon Blockade [0.0]
Photon blockade is the result of the interplay between the quantized nature of light and strong optical nonlinearities.
We theoretically study a single atom coupled to the light field.
We show that this transition is associated to the spontaneous breaking of an anti-unitary PT-symmetry.
arXiv Detail & Related papers (2020-06-10T01:09:21Z) - Parallel dark soliton pair in a bistable 2D exciton-polariton superfluid [47.187609203210705]
2D dark solitons are unstable and collapse into vortices due to snake instabilities.
We demonstrate that a pair of dark solitons can be formed in the wake of an obstacle in a polariton flow resonantly supported by a homogeneous laser beam.
arXiv Detail & Related papers (2020-03-25T13:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.