Toward collective chemistry by strong light-matter coupling
- URL: http://arxiv.org/abs/2306.08944v1
- Date: Thu, 15 Jun 2023 08:34:28 GMT
- Title: Toward collective chemistry by strong light-matter coupling
- Authors: Bing Gu
- Abstract summary: Theory is constructed by a pseudoparticle representation of the molecular Hamiltonians, mapping the polaritonic Hamiltonian into a coupled fermion-boson model under particle number constraints.
Numerical demonstrations are shown for the driven Tavis-Cummings model, which shows an excellent agreement with exact results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strong light-matter coupling provides a versatile and novel means to
manipulate chemical processes. Here we develop a theoretical framework to
investigate the spectroscopy and dynamics of a molecular ensemble embedded in
an optical cavity under the collective strong coupling regime. This theory is
constructed by a pseudoparticle representation of the molecular Hamiltonians,
mapping the polaritonic Hamiltonian into a coupled fermion-boson model under
particle number constraints. The mapped model is then analyzed using the
non-equilibrium Green function theory with the important self-energy diagrams
identified through power counting. Numerical demonstrations are shown for the
driven Tavis-Cummings model, which shows an excellent agreement with exact
results.
Related papers
- Semiclassical Truncated-Wigner-Approximation Theory of Molecular Exciton-Polariton Dynamics in Optical Cavities [0.0]
Molecular exciton polaritons are hybrid states resulting from the strong coupling of molecular electronic excitations with an optical cavity mode.
We develop a semiclassical theory for molecular exciton-polariton dynamics using the Wigner approximation.
arXiv Detail & Related papers (2024-09-27T05:48:37Z) - Simulating Chemistry with Fermionic Optical Superlattices [2.7521403951088934]
We show that quantum number preserving Ans"atze for variational optimization in quantum chemistry find an elegant mapping to ultracold fermions in optical superlattices.
Trial ground states for arbitrary molecular Hamiltonians can be prepared and their molecular energies measured in the lattice.
arXiv Detail & Related papers (2024-09-09T14:35:55Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - A theoretical perspective on molecular polaritonics [0.0]
polaritonic phenomena emerging in light-matter interaction regime have proven to be difficult tasks.
The accurate treatment of the vibrational spectrum of the former is key, and simplified quantum models are not valid in many cases.
Loss and dissipation, in the form of absorption or radiation, must also be included in the theoretical description of polaritons.
arXiv Detail & Related papers (2022-01-08T13:29:46Z) - A perspective on ab initio modeling of polaritonic chemistry: The role
of non-equilibrium effects and quantum collectivity [0.0]
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry.
ab initio methods are used to tackle this complexity.
Various extensions towards a refined description of cavity-modified chemistry are introduced.
arXiv Detail & Related papers (2021-08-27T12:48:57Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Collective Dissipative Molecule Formation in a Cavity [0.0]
We propose a mechanism to realize high-yield molecular formation from ultracold atoms.
We demonstrate that the molecular yield can be improved by simply increasing the number of atoms.
arXiv Detail & Related papers (2020-02-13T16:25:30Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.