論文の概要: CHATTY: Coupled Holistic Adversarial Transport Terms with Yield for
Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2304.09623v2
- Date: Thu, 20 Apr 2023 16:39:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 15:43:22.856526
- Title: CHATTY: Coupled Holistic Adversarial Transport Terms with Yield for
Unsupervised Domain Adaptation
- Title(参考訳): CHATTY: Unsupervised Domain Adaptation の利益と正反対の輸送用語の結合
- Authors: Chirag P, Mukta Wagle, Ravi Kant Gupta, Pranav Jeevan, Amit Sethi
- Abstract要約: 我々はCHATTYと呼ばれる新しい手法を提案する。
敵対的トレーニングは、ニューラルネットワークの特徴抽出層をトレーニングするために、ドメイン判別器ヘッドからの勾配を反転させることで、ドメイン不変表現の学習に一般的に使用される。
本稿では,ソースとターゲットドメインの出力を学習可能な方法で置き換えるサブネットワークを提案する。
- 参考スコア(独自算出の注目度): 1.87446486236017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new technique called CHATTY: Coupled Holistic Adversarial
Transport Terms with Yield for Unsupervised Domain Adaptation. Adversarial
training is commonly used for learning domain-invariant representations by
reversing the gradients from a domain discriminator head to train the feature
extractor layers of a neural network. We propose significant modifications to
the adversarial head, its training objective, and the classifier head. With the
aim of reducing class confusion, we introduce a sub-network which displaces the
classifier outputs of the source and target domain samples in a learnable
manner. We control this movement using a novel transport loss that spreads
class clusters away from each other and makes it easier for the classifier to
find the decision boundaries for both the source and target domains. The
results of adding this new loss to a careful selection of previously proposed
losses leads to improvement in UDA results compared to the previous
state-of-the-art methods on benchmark datasets. We show the importance of the
proposed loss term using ablation studies and visualization of the movement of
target domain sample in representation space.
- Abstract(参考訳): 非教師なしドメイン適応のための収率を持つ包括的逆移動項を結合したchattyと呼ばれる新しい手法を提案する。
ニューラルネットワークの特徴抽出器層をトレーニングするために、ドメイン識別器ヘッドからの勾配を反転させることで、ドメイン不変表現の学習に一般的に使用される。
本研究は, 対向頭部, 訓練目標, 分類器頭部の大幅な修正を提案する。
クラス混同を減らすことを目的としたサブネットワークを導入し,ソースと対象ドメインの分類器出力を学習可能な方法で置き換える。
私たちは、クラスクラスタを互いに遠ざける新しいトランスポートロスを使用してこの動きを制御し、分類器がソースドメインとターゲットドメインの両方の決定バウンダリを見つけやすくします。
この新たな損失を事前提案された損失の慎重な選択に追加した結果、従来のベンチマークデータセットの最先端手法と比較して、UDA結果が改善される。
アブレーション研究と表現空間における対象領域の移動の可視化を用いて,提案する損失項の重要性を示す。
関連論文リスト
- Adversarial Semi-Supervised Domain Adaptation for Semantic Segmentation:
A New Role for Labeled Target Samples [7.199108088621308]
我々は、ラベル付き対象データがソースサンプルまたは実際のターゲットサンプルとして振る舞う場合に、新たなトレーニング目標損失を設計する。
提案手法を支援するために,ソースデータとラベル付きターゲットデータを混合し,同じ適応プロセスを適用する補完手法を検討する。
本稿では,GTA5,SynTHIA,Cityscapesのベンチマーク実験を通じて得られた知見を紹介する。
論文 参考訳(メタデータ) (2023-12-12T15:40:22Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
オピニオンターゲット抽出(OTE)またはアスペクト抽出(AE)は意見マイニングの基本的な課題である。
最近の研究は、現実世界のシナリオでよく見られるクロスドメインのOTEに焦点を当てている。
そこで本稿では,ドメイン固有の教師と学生のネットワークから出力されるモデルが未学習のターゲットデータと一致しない対象サンプルを選択するためのSSLアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-28T16:31:17Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Unsupervised Domain Adaptation for Retinal Vessel Segmentation with
Adversarial Learning and Transfer Normalization [22.186070895966022]
本稿では,ソースドメインとターゲットドメイン間の分布差を低減するために,エントロピーに基づく逆学習戦略を提案する。
ディープネットワークの転送性をさらに向上するために,新しい転送正規化層を提案する。
我々の手法は、他の最先端手法と比較して大きな性能向上をもたらす。
論文 参考訳(メタデータ) (2021-08-04T02:45:37Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised Domain Adapt (UDA)メソッドは、ドメインの競合トレーニングを利用して、機能を調整してドメインのギャップを減らす。
本研究では,Re-enforceable Adversarial Domain Adaptation (RADA) と呼ばれる効率的な最適化戦略を提案する。
RADAは、動的ドメインラベルを使用して、トレーニング中にドメイン識別器を再活性化することを目指しています。
論文 参考訳(メタデータ) (2021-03-22T08:32:55Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Domain Adaptation in LiDAR Semantic Segmentation by Aligning Class
Distributions [9.581605678437032]
この研究は、LiDARセマンティックセグメンテーションモデルに対する教師なしドメイン適応の問題に対処する。
我々のアプローチは、現在の最先端のアプローチの上に新しいアイデアを結合し、新しい最先端の成果をもたらす。
論文 参考訳(メタデータ) (2020-10-23T08:52:15Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
教師なしドメイン適応は、ソースドメインからターゲットドメインに知識を転送する有望な道である。
本稿では,距離メトリックガイド機能アライメント(MetFA)を提案する。
我々のモデルは、クラス分布アライメントを統合して、ソースドメインからターゲットドメインにセマンティック知識を転送します。
論文 参考訳(メタデータ) (2020-08-19T13:36:57Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z) - Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation [13.163271874039191]
本稿では,フォワード・バック・サイクリック(FBC)トレーニングによる物体検出のための教師なし領域適応手法を提案する。
近年, 対角訓練に基づく領域適応法は, 限界特徴分布アライメントによる領域差最小化に有効であることが示された。
本稿では,後方ホッピングによるソースからターゲットへの適応と,前方通過によるターゲットからソースへの適応を反復的に計算するフォワード・バック・サイクル適応を提案する。
論文 参考訳(メタデータ) (2020-02-03T06:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。