FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing
- URL: http://arxiv.org/abs/2304.09831v1
- Date: Wed, 19 Apr 2023 17:33:47 GMT
- Title: FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing
- Authors: Kyle Stachowicz, Dhruv Shah, Arjun Bhorkar, Ilya Kostrikov, Sergey
Levine
- Abstract summary: We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
- Score: 71.76084256567599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a system that enables an autonomous small-scale RC car to drive
aggressively from visual observations using reinforcement learning (RL). Our
system, FastRLAP (faster lap), trains autonomously in the real world, without
human interventions, and without requiring any simulation or expert
demonstrations. Our system integrates a number of important components to make
this possible: we initialize the representations for the RL policy and value
function from a large prior dataset of other robots navigating in other
environments (at low speed), which provides a navigation-relevant
representation. From here, a sample-efficient online RL method uses a single
low-speed user-provided demonstration to determine the desired driving course,
extracts a set of navigational checkpoints, and autonomously practices driving
through these checkpoints, resetting automatically on collision or failure.
Perhaps surprisingly, we find that with appropriate initialization and choice
of algorithm, our system can learn to drive over a variety of racing courses
with less than 20 minutes of online training. The resulting policies exhibit
emergent aggressive driving skills, such as timing braking and acceleration
around turns and avoiding areas which impede the robot's motion, approaching
the performance of a human driver using a similar first-person interface over
the course of training.
Related papers
- Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Avoidance Navigation Based on Offline Pre-Training Reinforcement
Learning [0.0]
This paper presents a Pre-Training Deep Reinforcement Learning(DRL) for avoidance navigation without map for mobile robots.
The efficient offline training strategy is proposed to speed up the inefficient random explorations in early stage.
It was demonstrated that our DRL model have universal general capacity in different environment.
arXiv Detail & Related papers (2023-08-03T06:19:46Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Formula RL: Deep Reinforcement Learning for Autonomous Racing using
Telemetry Data [4.042350304426975]
We frame the problem as a reinforcement learning task with a multidimensional input consisting of the vehicle telemetry, and a continuous action space.
We put 10 variants of deep deterministic policy gradient (DDPG) to race in two experiments.
Our studies show that models trained with RL are not only able to drive faster than the baseline open source handcrafted bots but also generalize to unknown tracks.
arXiv Detail & Related papers (2021-04-22T14:40:12Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.