Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning
- URL: http://arxiv.org/abs/2107.08325v1
- Date: Sun, 18 Jul 2021 00:00:48 GMT
- Title: Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning
- Authors: Peide Cai, Hengli Wang, Huaiyang Huang, Yuxuan Liu, Ming Liu
- Abstract summary: Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
- Score: 13.699336307578488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous car racing is a challenging task in the robotic control area.
Traditional modular methods require accurate mapping, localization and
planning, which makes them computationally inefficient and sensitive to
environmental changes. Recently, deep-learning-based end-to-end systems have
shown promising results for autonomous driving/racing. However, they are
commonly implemented by supervised imitation learning (IL), which suffers from
the distribution mismatch problem, or by reinforcement learning (RL), which
requires a huge amount of risky interaction data. In this work, we present a
general deep imitative reinforcement learning approach (DIRL), which
successfully achieves agile autonomous racing using visual inputs. The driving
knowledge is acquired from both IL and model-based RL, where the agent can
learn from human teachers as well as perform self-improvement by safely
interacting with an offline world model. We validate our algorithm both in a
high-fidelity driving simulation and on a real-world 1/20-scale RC-car with
limited onboard computation. The evaluation results demonstrate that our method
outperforms previous IL and RL methods in terms of sample efficiency and task
performance. Demonstration videos are available at
https://caipeide.github.io/autorace-dirl/
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Spatiotemporal Costmap Inference for MPC via Deep Inverse Reinforcement
Learning [27.243603228431564]
We propose a new IRLRL algorithm that learns a goal-conditionedtemporal reward function.
The resulting costmap is used by Model Predictive Controllers (MPCs) to perform a task.
arXiv Detail & Related papers (2022-01-17T17:36:29Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Formula RL: Deep Reinforcement Learning for Autonomous Racing using
Telemetry Data [4.042350304426975]
We frame the problem as a reinforcement learning task with a multidimensional input consisting of the vehicle telemetry, and a continuous action space.
We put 10 variants of deep deterministic policy gradient (DDPG) to race in two experiments.
Our studies show that models trained with RL are not only able to drive faster than the baseline open source handcrafted bots but also generalize to unknown tracks.
arXiv Detail & Related papers (2021-04-22T14:40:12Z) - Autonomous Overtaking in Gran Turismo Sport Using Curriculum
Reinforcement Learning [39.757652701917166]
This work proposes a new learning-based method to tackle the autonomous overtaking problem.
We evaluate our approach using Gran Turismo Sport -- a world-leading car racing simulator.
arXiv Detail & Related papers (2021-03-26T18:06:50Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
We present a reinforcement learning-based solution to autonomously race on a miniature race car platform.
We show that a policy that is trained purely in simulation can be successfully transferred to the real robotic setup.
arXiv Detail & Related papers (2020-11-26T14:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.