Learning and Adapting Agile Locomotion Skills by Transferring Experience
- URL: http://arxiv.org/abs/2304.09834v1
- Date: Wed, 19 Apr 2023 17:37:54 GMT
- Title: Learning and Adapting Agile Locomotion Skills by Transferring Experience
- Authors: Laura Smith, J. Chase Kew, Tianyu Li, Linda Luu, Xue Bin Peng, Sehoon
Ha, Jie Tan, Sergey Levine
- Abstract summary: We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
- Score: 71.8926510772552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legged robots have enormous potential in their range of capabilities, from
navigating unstructured terrains to high-speed running. However, designing
robust controllers for highly agile dynamic motions remains a substantial
challenge for roboticists. Reinforcement learning (RL) offers a promising
data-driven approach for automatically training such controllers. However,
exploration in these high-dimensional, underactuated systems remains a
significant hurdle for enabling legged robots to learn performant,
naturalistic, and versatile agility skills. We propose a framework for training
complex robotic skills by transferring experience from existing controllers to
jumpstart learning new tasks. To leverage controllers we can acquire in
practice, we design this framework to be flexible in terms of their source --
that is, the controllers may have been optimized for a different objective
under different dynamics, or may require different knowledge of the
surroundings -- and thus may be highly suboptimal for the target task. We show
that our method enables learning complex agile jumping behaviors, navigating to
goal locations while walking on hind legs, and adapting to new environments. We
also demonstrate that the agile behaviors learned in this way are graceful and
safe enough to deploy in the real world.
Related papers
- Guided Decoding for Robot On-line Motion Generation and Adaption [44.959409835754634]
We present a novel motion generation approach for robot arms, with high degrees of freedom, in complex settings that can adapt online to obstacles or new via points.
We train a transformer architecture, based on conditional variational autoencoder, on a large dataset of simulated trajectories used as demonstrations.
We show that our model successfully generates motion from different initial and target points and that is capable of generating trajectories that navigate complex tasks across different robotic platforms.
arXiv Detail & Related papers (2024-03-22T14:32:27Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Generalized Animal Imitator: Agile Locomotion with Versatile Motion Prior [14.114972332185044]
This paper introduces the Versatile Motion prior (VIM) - a Reinforcement Learning framework designed to incorporate a range of agile locomotion tasks.
Our framework enables legged robots to learn diverse agile low-level skills by imitating animal motions and manually designed motions.
Our evaluations of the VIM framework span both simulation environments and real-world deployment.
arXiv Detail & Related papers (2023-10-02T17:59:24Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots.
Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism.
We present two methods for tackling the benchmark.
arXiv Detail & Related papers (2023-05-24T02:49:43Z) - Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning [141.56016556936865]
This work aims to push the limits of agility for bipedal robots by enabling a torque-controlled bipedal robot to perform robust and versatile dynamic jumps in the real world.
We present a reinforcement learning framework for training a robot to accomplish a large variety of jumping tasks, such as jumping to different locations and directions.
We develop a new policy structure that encodes the robot's long-term input/output (I/O) history while also providing direct access to a short-term I/O history.
arXiv Detail & Related papers (2023-02-19T01:06:09Z) - Learning Agile Locomotion via Adversarial Training [59.03007947334165]
In this paper, we present a multi-agent learning system, in which a quadruped robot (protagonist) learns to chase another robot (adversary) while the latter learns to escape.
We find that this adversarial training process not only encourages agile behaviors but also effectively alleviates the laborious environment design effort.
In contrast to prior works that used only one adversary, we find that training an ensemble of adversaries, each of which specializes in a different escaping strategy, is essential for the protagonist to master agility.
arXiv Detail & Related papers (2020-08-03T01:20:37Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics.
We present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals.
arXiv Detail & Related papers (2020-04-02T02:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.