Transferable Latent-to-Latent Locomotion Policy for Efficient and Versatile Motion Control of Diverse Legged Robots
- URL: http://arxiv.org/abs/2503.17626v1
- Date: Sat, 22 Mar 2025 03:01:25 GMT
- Title: Transferable Latent-to-Latent Locomotion Policy for Efficient and Versatile Motion Control of Diverse Legged Robots
- Authors: Ziang Zheng, Guojian Zhan, Bin Shuai, Shengtao Qin, Jiangtao Li, Tao Zhang, Shengbo Eben Li,
- Abstract summary: The pretrain-and-finetune paradigm offers a promising approach for efficiently adapting to new robot entities and tasks.<n>We propose a latent training framework where a transferable latent-to-latent locomotion policy is pretrained alongside diverse task-specific observation encoders and action decoders.<n>We validate our approach through extensive simulations and real-world experiments, demonstrating that the pretrained latent-to-latent locomotion policy effectively generalizes to new robot entities and tasks with improved efficiency.
- Score: 9.837559106057814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has demonstrated remarkable capability in acquiring robot skills, but learning each new skill still requires substantial data collection for training. The pretrain-and-finetune paradigm offers a promising approach for efficiently adapting to new robot entities and tasks. Inspired by the idea that acquired knowledge can accelerate learning new tasks with the same robot and help a new robot master a trained task, we propose a latent training framework where a transferable latent-to-latent locomotion policy is pretrained alongside diverse task-specific observation encoders and action decoders. This policy in latent space processes encoded latent observations to generate latent actions to be decoded, with the potential to learn general abstract motion skills. To retain essential information for decision-making and control, we introduce a diffusion recovery module that minimizes information reconstruction loss during pretrain stage. During fine-tune stage, the pretrained latent-to-latent locomotion policy remains fixed, while only the lightweight task-specific encoder and decoder are optimized for efficient adaptation. Our method allows a robot to leverage its own prior experience across different tasks as well as the experience of other morphologically diverse robots to accelerate adaptation. We validate our approach through extensive simulations and real-world experiments, demonstrating that the pretrained latent-to-latent locomotion policy effectively generalizes to new robot entities and tasks with improved efficiency.
Related papers
- Teaching Robots to Handle Nuclear Waste: A Teleoperation-Based Learning Approach< [8.587182001055448]
The proposed framework addresses challenges in nuclear waste handling tasks, which often involve repetitive and meticulous manipulation operations.
By capturing operator movements and manipulation forces during teleoperation, the framework utilizes this data to train machine learning models capable of replicating and generalizing human skills.
arXiv Detail & Related papers (2025-04-02T06:46:29Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - A Central Motor System Inspired Pre-training Reinforcement Learning for Robotic Control [7.227887302864789]
We propose CMS-PRL, a pre-training reinforcement learning method inspired by the Central Motor System.
First, we introduce a fusion reward mechanism that combines the basic motor reward with mutual information reward.
Second, we design a skill encoding method inspired by the motor program of the basal ganglia, providing rich and continuous skill instructions.
Third, we propose a skill activity function to regulate motor skill activity, enabling the generation of skills with different activity levels.
arXiv Detail & Related papers (2023-11-14T00:49:12Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
We show how to adapt vision-based robotic manipulation policies to new variations by fine-tuning via off-policy reinforcement learning.
This adaptation uses less than 0.2% of the data necessary to learn the task from scratch.
We find that our approach of adapting pre-trained policies leads to substantial performance gains over the course of fine-tuning.
arXiv Detail & Related papers (2020-04-21T17:57:04Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics.
We present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals.
arXiv Detail & Related papers (2020-04-02T02:56:16Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.