論文の概要: Architectures of Topological Deep Learning: A Survey of Message-Passing
Topological Neural Networks
- arxiv url: http://arxiv.org/abs/2304.10031v3
- Date: Wed, 21 Feb 2024 23:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 19:10:40.629378
- Title: Architectures of Topological Deep Learning: A Survey of Message-Passing
Topological Neural Networks
- Title(参考訳): トポロジカルディープラーニングのアーキテクチャ:メッセージパージングトポロジカルニューラルネットワークの調査
- Authors: Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, Nina Miolane
- Abstract要約: トポロジカルディープラーニング(TDL)は、複雑なシステムに関連するデータから知識を処理、抽出するためのフレームワークを提供する。
TDLは、応用科学以上の分野において、破滅の約束を守る理論的、実践的な利点を示してきた。
リレーショナルシステムにおけるTDL文学の急速な発展は、メッセージパストトポロジカルニューラルネットワーク(TNN)アーキテクチャにおける表記と言語の統合の欠如につながっている。
これは、既存の作業に基づいて構築し、メッセージパッシングTNNを新たな現実的な問題にデプロイする上で、真の障害となる。
- 参考スコア(独自算出の注目度): 5.324479750432588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The natural world is full of complex systems characterized by intricate
relations between their components: from social interactions between
individuals in a social network to electrostatic interactions between atoms in
a protein. Topological Deep Learning (TDL) provides a comprehensive framework
to process and extract knowledge from data associated with these systems, such
as predicting the social community to which an individual belongs or predicting
whether a protein can be a reasonable target for drug development. TDL has
demonstrated theoretical and practical advantages that hold the promise of
breaking ground in the applied sciences and beyond. However, the rapid growth
of the TDL literature for relational systems has also led to a lack of
unification in notation and language across message-passing Topological Neural
Network (TNN) architectures. This presents a real obstacle for building upon
existing works and for deploying message-passing TNNs to new real-world
problems. To address this issue, we provide an accessible introduction to TDL
for relational systems, and compare the recently published message-passing TNNs
using a unified mathematical and graphical notation. Through an intuitive and
critical review of the emerging field of TDL, we extract valuable insights into
current challenges and exciting opportunities for future development.
- Abstract(参考訳): 自然界は、その構成要素間の複雑な関係によって特徴づけられる複雑なシステムでいっぱいである:ソーシャルネットワーク内の個人間の社会的相互作用から、タンパク質内の原子間の静電気的相互作用まで。
トポロジカルディープラーニング(topological deep learning, tdl)は、個人が属する社会コミュニティの予測や、タンパク質が薬物開発に適したターゲットとなるかどうかの予測など、これらのシステムに関連するデータから知識を処理および抽出するための包括的なフレームワークを提供する。
TDLは、応用科学以上の分野において、破滅の約束を守る理論的、実践的な利点を示してきた。
しかし、リレーショナルシステムにおけるTDL文学の急速な発展は、メッセージパスするトポロジカルニューラルネットワーク(TNN)アーキテクチャ間の表記と言語の統合の欠如につながっている。
これは、既存の作業に基づいて構築し、メッセージパッシングTNNを新たな現実的な問題にデプロイする上で、真の障害となる。
この問題に対処するため,リレーショナルシステムのためのTDLの導入と,数学的およびグラフィカルな統一表記法を用いて最近公開されたメッセージパスTNNを比較した。
tdlの新興分野に関する直感的かつ批判的なレビューを通じて、現在の課題と将来の開発へのエキサイティングな機会に対する貴重な洞察を抽出します。
関連論文リスト
- Neurosymbolic AI approach to Attribution in Large Language Models [5.3454230926797734]
ニューロシンボリックAI(NesyAI)は、ニューラルネットワークの強みと構造化されたシンボリック推論を組み合わせる。
本稿では、NesyAIフレームワークが既存の属性モデルをどのように拡張し、より信頼性が高く、解釈可能で、適応可能なシステムを提供するかを検討する。
論文 参考訳(メタデータ) (2024-09-30T02:20:36Z) - ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models [48.559185522099625]
計画は人間の知性と現代大言語モデル(LLM)の両方の重要な要素である
本稿では,トランスフォーマーを用いたLLMにおける次の単語予測機構による計画能力の出現について検討する。
論文 参考訳(メタデータ) (2024-05-15T09:59:37Z) - Position: Topological Deep Learning is the New Frontier for Relational Learning [51.05869778335334]
トポロジカルディープラーニング(TDL)は、トポロジカルな特徴を用いてディープラーニングモデルを理解し設計する、急速に進化する分野である。
本稿では,TDLがリレーショナル学習の新たなフロンティアであることを示す。
論文 参考訳(メタデータ) (2024-02-14T00:35:10Z) - Graph Neural Networks for Tabular Data Learning: A Survey with Taxonomy
and Directions [10.753191494611892]
グラフニューラルネットワーク(GNN)を用いた語彙データ学習
GNNは、様々なタブラルデータ学習領域にまたがって、大きな関心を集め、応用している。
この調査は、研究者や実践者のリソースとして役立ち、TDLの革命におけるGNNの役割を深く理解している。
論文 参考訳(メタデータ) (2024-01-04T08:49:10Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Inter-layer Information Similarity Assessment of Deep Neural Networks
Via Topological Similarity and Persistence Analysis of Data Neighbour
Dynamics [93.4221402881609]
ディープニューラルネットワーク(DNN)による情報構造の定量的解析により、DNNアーキテクチャの理論的性能に関する新たな知見が明らかにされる。
量的情報構造解析のためのLSとIDの戦略に着想を得て, 層間情報類似度評価のための2つの新しい補完手法を提案する。
本研究では,画像データを用いた深層畳み込みニューラルネットワークのアーキテクチャ解析を行い,その効果を実証する。
論文 参考訳(メタデータ) (2020-12-07T15:34:58Z) - On Computability, Learnability and Extractability of Finite State
Machines from Recurrent Neural Networks [0.0]
この研究は、有限状態マシン(FSM)とリカレントニューラルネットワーク(RNN)の間の接続に光を当てることを目的としている。
このマスターの論文では、リカレントニューラルネットワークからの有限状態マシンの抽出可能性、学習可能性の側面、計算リンクの3倍のコネクションが検討されている。
論文 参考訳(メタデータ) (2020-09-10T15:55:30Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。