Towards replacing precipitation ensemble predictions systems using
machine learning
- URL: http://arxiv.org/abs/2304.10251v1
- Date: Thu, 20 Apr 2023 12:20:35 GMT
- Title: Towards replacing precipitation ensemble predictions systems using
machine learning
- Authors: R\"udiger Brecht and Alex Bihlo
- Abstract summary: We propose a new approach to generating ensemble weather predictions for high-resolution precipitation.
The method uses generative adversarial networks to learn the complex patterns of precipitation.
We demonstrate the feasibility of generating realistic precipitation ensemble members on unseen higher resolutions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precipitation forecasts are less accurate compared to other meteorological
fields because several key processes affecting precipitation distribution and
intensity occur below the resolved scale of global weather prediction models.
This requires to use higher resolution simulations. To generate an uncertainty
prediction associated with the forecast, ensembles of simulations are run
simultaneously. However, the computational cost is a limiting factor here.
Thus, instead of generating an ensemble system from simulations there is a
trend of using neural networks. Unfortunately the data for high resolution
ensemble runs is not available. We propose a new approach to generating
ensemble weather predictions for high-resolution precipitation without
requiring high-resolution training data. The method uses generative adversarial
networks to learn the complex patterns of precipitation and produce diverse and
realistic precipitation fields, allowing to generate realistic precipitation
ensemble members using only the available control forecast. We demonstrate the
feasibility of generating realistic precipitation ensemble members on unseen
higher resolutions. We use evaluation metrics such as RMSE, CRPS, rank
histogram and ROC curves to demonstrate that our generated ensemble is almost
identical to the ECMWF IFS ensemble.
Related papers
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
We propose an unsupervised postprocessing method to eliminate the blurriness without the requirement of training with the pairs of blurry predictions and corresponding ground truth.
A zero-shot blur kernel estimation mechanism and an auto-scale denoise guidance strategy are introduced to adapt the unconditional correlations to any blurriness modes.
arXiv Detail & Related papers (2024-10-08T08:38:23Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Generative ensemble deep learning severe weather prediction from a
deterministic convection-allowing model [0.0]
Method combines conditional generative adversarial networks (CGANs) with a convolutional neural network (CNN) to post-process convection-allowing model (CAM) forecasts.
The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts.
The method produced skillful predictions with up to 20% Brier Skill Score (BSS) increases compared to other neural-network-based reference methods.
arXiv Detail & Related papers (2023-10-09T18:02:11Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
We train a conditional Generative Adversarial Network -- coined CorrectorGAN -- to produce ensembles of high-resolution, bias-corrected forecasts.
CorrectorGAN, once trained, produces predictions in seconds on a single machine.
Results raise exciting questions about the necessity of regional models, and whether data-driven downscaling and correction methods can be transferred to data-poor regions.
arXiv Detail & Related papers (2022-03-23T09:45:12Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z) - Deep Learning for Post-Processing Ensemble Weather Forecasts [14.622977874836298]
We propose a mixed model that uses only a subset of the original weather trajectories combined with a post-processing step using deep neural networks.
We show that our post-processing can use fewer trajectories to achieve comparable results to the full ensemble.
arXiv Detail & Related papers (2020-05-18T14:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.