Increasing the accuracy and resolution of precipitation forecasts using
deep generative models
- URL: http://arxiv.org/abs/2203.12297v1
- Date: Wed, 23 Mar 2022 09:45:12 GMT
- Title: Increasing the accuracy and resolution of precipitation forecasts using
deep generative models
- Authors: Ilan Price, Stephan Rasp
- Abstract summary: We train a conditional Generative Adversarial Network -- coined CorrectorGAN -- to produce ensembles of high-resolution, bias-corrected forecasts.
CorrectorGAN, once trained, produces predictions in seconds on a single machine.
Results raise exciting questions about the necessity of regional models, and whether data-driven downscaling and correction methods can be transferred to data-poor regions.
- Score: 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately forecasting extreme rainfall is notoriously difficult, but is also
ever more crucial for society as climate change increases the frequency of such
extremes. Global numerical weather prediction models often fail to capture
extremes, and are produced at too low a resolution to be actionable, while
regional, high-resolution models are hugely expensive both in computation and
labour. In this paper we explore the use of deep generative models to
simultaneously correct and downscale (super-resolve) global ensemble forecasts
over the Continental US. Specifically, using fine-grained radar observations as
our ground truth, we train a conditional Generative Adversarial Network --
coined CorrectorGAN -- via a custom training procedure and augmented loss
function, to produce ensembles of high-resolution, bias-corrected forecasts
based on coarse, global precipitation forecasts in addition to other relevant
meteorological fields. Our model outperforms an interpolation baseline, as well
as super-resolution-only and CNN-based univariate methods, and approaches the
performance of an operational regional high-resolution model across an array of
established probabilistic metrics. Crucially, CorrectorGAN, once trained,
produces predictions in seconds on a single machine. These results raise
exciting questions about the necessity of regional models, and whether
data-driven downscaling and correction methods can be transferred to data-poor
regions that so far have had no access to high-resolution forecasts.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - CaFA: Global Weather Forecasting with Factorized Attention on Sphere [7.687215328455751]
We propose a factorized-attention-based model tailored for spherical geometries to mitigate this issue.
The deterministic forecasting accuracy of the proposed model on $1.5circ$ and 0-7 days' lead time is on par with state-of-the-art purely data-driven machine learning weather prediction models.
arXiv Detail & Related papers (2024-05-12T23:18:14Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Precipitation Downscaling with Spatiotemporal Video Diffusion [19.004369237435437]
This work extends recent video diffusion models to precipitation super-resolution.
We use a deterministic downscaler followed by a temporally-conditioned diffusion model to capture noise characteristics and high-frequency patterns.
Our analysis, capturing CRPS, MSE, precipitation distributions, and qualitative aspects using California and the Himalayas, establishes our method as a new standard for data-driven precipitation downscaling.
arXiv Detail & Related papers (2023-12-11T02:38:07Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
Score-based diffusion models offer a new approach to modeling probability distributions over many dependent variables.
We apply the technique to day-ahead solar irradiance forecasts by generating many samples from a diffusion model trained to super-resolve numerical weather predictions.
arXiv Detail & Related papers (2023-02-01T01:32:25Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.