論文の概要: An Introduction to Transformers
- arxiv url: http://arxiv.org/abs/2304.10557v1
- Date: Thu, 20 Apr 2023 14:54:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 16:51:58.531436
- Title: An Introduction to Transformers
- Title(参考訳): 変圧器入門
- Authors: Richard E. Turner
- Abstract要約: トランスは、データポイントのポイントの有用なシーケンスを学習するために使用できるニューラルネットワークコンポーネントである。
このノートは、数学的に正確で直感的でクリーンなトランスフォーマーアーキテクチャの記述を目的としている。
- 参考スコア(独自算出の注目度): 30.585424861188848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transformer is a neural network component that can be used to learn
useful representations of sequences or sets of datapoints. The transformer has
driven recent advances in natural language processing, computer vision, and
spatio-temporal modelling. There are many introductions to transformers, but
most do not contain precise mathematical descriptions of the architecture and
the intuitions behind the design choices are often also missing. Moreover, as
research takes a winding path, the explanations for the components of the
transformer can be idiosyncratic. In this note we aim for a mathematically
precise, intuitive, and clean description of the transformer architecture.
- Abstract(参考訳): トランスはニューラルネットワークコンポーネントであり、シーケンスやデータポイントの集合の有用な表現を学ぶのに使用できる。
この変換器は、自然言語処理、コンピュータビジョン、時空間モデリングの最近の進歩を推し進めている。
トランスフォーマーの紹介は数多く存在するが、ほとんどはアーキテクチャの正確な数学的記述を含んでおらず、設計の選択の背後にある直観も欠落している。
さらに、研究が曲がりくねった経路を辿ると、変圧器の部品の説明は慣用的にできる。
本論では, 数学的に正確で直感的で, クリーンなトランスフォーマアーキテクチャ記述を目指している。
関連論文リスト
- Extracting Finite State Machines from Transformers [0.3069335774032178]
機械的解釈可能性の観点から正規言語で訓練された変圧器の訓練可能性について検討する。
有限個の記号が状態を決定するとき, 変圧器の訓練性に対して, より強い下界を経験的に見出す。
機械的な洞察により、1層トランスフォーマーが優れた長さの一般化で学習できる正規言語を特徴付けることができる。
論文 参考訳(メタデータ) (2024-10-08T13:43:50Z) - Transformer Explainer: Interactive Learning of Text-Generative Models [65.91049787390692]
Transformer Explainerは、GPT-2モデルを通じてTransformerについて学ぶために非専門家向けに設計されたインタラクティブな可視化ツールである。
ライブのGPT-2インスタンスをユーザのブラウザでローカルに実行し、ユーザが自身の入力を実験し、Transformerの内部コンポーネントとパラメータの協調動作をリアルタイムで観察することを可能にする。
論文 参考訳(メタデータ) (2024-08-08T17:49:07Z) - Transformers are Expressive, But Are They Expressive Enough for Regression? [38.369337945109855]
この結果から,トランスフォーマーはスムーズな関数を確実に近似するのに苦労し,分割的に一定間隔の近似に頼っていることがわかった。
これらの課題に光を当てることで、トランスフォーマーの能力に関する洗練された理解を提唱する。
論文 参考訳(メタデータ) (2024-02-23T18:12:53Z) - Introduction to Transformers: an NLP Perspective [59.0241868728732]
本稿では、トランスフォーマーの基本概念と、これらのモデルの最近の進歩を形作る重要な技術を紹介する。
これには、標準のTransformerアーキテクチャ、一連のモデル改良、一般的なアプリケーションの記述が含まれる。
論文 参考訳(メタデータ) (2023-11-29T13:51:04Z) - Linear attention is (maybe) all you need (to understand transformer
optimization) [55.81555204646486]
我々は、単純だが正準化された浅部変圧器モデルの研究により、変圧器の微妙さの理解に向けて前進する。
最も重要なことは、線形化モデルがトランスフォーマーのトレーニング力学のいくつかの顕著な側面を再現できることである。
論文 参考訳(メタデータ) (2023-10-02T10:48:42Z) - Transformers learn in-context by gradient descent [58.24152335931036]
自己回帰目標におけるトランスフォーマーの訓練は、勾配に基づくメタラーニングの定式化と密接に関連している。
トレーニングされたトランスフォーマーがメザ最適化器となる方法,すなわち,前方通過における勾配降下によるモデル学習方法を示す。
論文 参考訳(メタデータ) (2022-12-15T09:21:21Z) - Thinking Like Transformers [64.96770952820691]
本稿では,プログラミング言語の形式で変換器エンコーダの計算モデルを提案する。
RASPは、トランスフォーマーによって確実に学習できるタスクの解決策をプログラムするのにどのように使えるかを示す。
ヒストグラム、ソート、ダイク言語のためのRASPプログラムを提供する。
論文 参考訳(メタデータ) (2021-06-13T13:04:46Z) - Transformer visualization via dictionary learning: contextualized
embedding as a linear superposition of transformer factors [15.348047288817478]
我々は,変圧器因子の線形重ね合わせとして,辞書学習を用いて「ブラックボックス」を開くことを提案する。
可視化により,変換因子によって得られた階層的意味構造を実演する。
この視覚化ツールによって、トランスフォーマーネットワークの動作に関するさらなる知識と理解が得られればと思っています。
論文 参考訳(メタデータ) (2021-03-29T20:51:33Z) - A Survey on Visual Transformer [126.56860258176324]
Transformerは、主に自己認識機構に基づくディープニューラルネットワークの一種である。
本稿では、これらの視覚変換器モデルについて、異なるタスクで分類し、それらの利点と欠点を分析することでレビューする。
論文 参考訳(メタデータ) (2020-12-23T09:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。