Quantifying the Benefit of Artificial Intelligence for Scientific Research
- URL: http://arxiv.org/abs/2304.10578v2
- Date: Sat, 1 Jun 2024 01:46:09 GMT
- Title: Quantifying the Benefit of Artificial Intelligence for Scientific Research
- Authors: Jian Gao, Dashun Wang,
- Abstract summary: We estimate both the direct use of AI and the potential benefit of AI in scientific research.
We find that the use of AI in research is widespread throughout the sciences, growing especially rapidly since 2015.
Our analysis reveals considerable potential for AI to benefit numerous scientific fields, yet a notable disconnect exists between AI education and its research applications.
- Score: 2.4700789675440524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ongoing artificial intelligence (AI) revolution has the potential to change almost every line of work. As AI capabilities continue to improve in accuracy, robustness, and reach, AI may outperform and even replace human experts across many valuable tasks. Despite enormous effort devoted to understanding the impact of AI on labor and the economy and AI's recent successes in accelerating scientific discovery and progress, we lack a systematic understanding of how AI advances may benefit scientific research across disciplines and fields. Here, drawing from the literature on the future of work and the science of science, we develop a measurement framework to estimate both the direct use of AI and the potential benefit of AI in scientific research, applying natural language processing techniques to 74.6 million publications and 7.1 million patents. We find that the use of AI in research is widespread throughout the sciences, growing especially rapidly since 2015, and papers that use AI exhibit a citation premium, more likely to be highly cited both within and outside their disciplines. Moreover, our analysis reveals considerable potential for AI to benefit numerous scientific fields, yet a notable disconnect exists between AI education and its research applications, highlighting a mismatch between the supply of AI expertise and its demand in research. Lastly, we examine demographic disparities in AI's benefits across scientific disciplines and find that disciplines with a higher proportion of women or Black scientists tend to be associated with less benefit, suggesting that AI's growing impact on research may further exacerbate existing inequalities in science. As the connection between AI and scientific research deepens, our findings may become increasingly important, with implications for the equity and sustainability of the research enterprise.
Related papers
- The Narrow Depth and Breadth of Corporate Responsible AI Research [3.364518262921329]
We show that the majority of AI firms show limited or no engagement in this critical subfield of AI.
Leading AI firms exhibit significantly lower output in responsible AI research compared to their conventional AI research.
Our results highlight the urgent need for industry to publicly engage in responsible AI research.
arXiv Detail & Related papers (2024-05-20T17:26:43Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - AI empowering research: 10 ways how science can benefit from AI [0.0]
This article explores the transformative impact of artificial intelligence (AI) on scientific research.
It highlights ten ways in which AI is revolutionizing the work of scientists, including powerful referencing tools, improved understanding of research problems, enhanced research question generation, optimized research design, stub data generation, data transformation, advanced data analysis, and AI-assisted reporting.
arXiv Detail & Related papers (2023-07-17T18:41:18Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - A narrowing of AI research? [0.0]
We study the evolution of the thematic diversity of AI research in academia and the private sector.
We measure the influence of private companies in AI research through the citations they receive and their collaborations with other institutions.
arXiv Detail & Related papers (2020-09-22T08:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.