AI empowering research: 10 ways how science can benefit from AI
- URL: http://arxiv.org/abs/2307.10265v1
- Date: Mon, 17 Jul 2023 18:41:18 GMT
- Title: AI empowering research: 10 ways how science can benefit from AI
- Authors: C\'esar Fran\c{c}a
- Abstract summary: This article explores the transformative impact of artificial intelligence (AI) on scientific research.
It highlights ten ways in which AI is revolutionizing the work of scientists, including powerful referencing tools, improved understanding of research problems, enhanced research question generation, optimized research design, stub data generation, data transformation, advanced data analysis, and AI-assisted reporting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article explores the transformative impact of artificial intelligence
(AI) on scientific research. It highlights ten ways in which AI is
revolutionizing the work of scientists, including powerful referencing tools,
improved understanding of research problems, enhanced research question
generation, optimized research design, stub data generation, data
transformation, advanced data analysis, and AI-assisted reporting. While AI
offers numerous benefits, challenges such as bias, privacy concerns, and the
need for human-AI collaboration must be considered. The article emphasizes that
AI can augment human creativity in science but not replace it.
Related papers
- Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
This study raises the research question of measuring human contribution in AI-assisted content generation.
By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation.
arXiv Detail & Related papers (2024-08-27T05:56:04Z) - A Survey of AI Reliance [1.6124402884077915]
Current shortcomings in the literature include unclear influences on AI reliance, lack of external validity, conflicting approaches to measuring reliance, and disregard for a change in reliance over time.
In conclusion, we present a morphological box that serves as a guide for research on AI reliance.
arXiv Detail & Related papers (2024-07-22T09:34:58Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - Drivers and Barriers of AI Adoption and Use in Scientific Research [0.0]
We study the integration of AI in scientific research, focusing on the human capital of scientists and the external resources available within their network of collaborators and institutions.
Our results suggest that AI is pioneered by domain scientists with a taste for exploration' and who are embedded in a network rich of computer scientists, experienced AI scientists and early-career researchers.
arXiv Detail & Related papers (2023-12-15T14:49:13Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Quantifying the Benefit of Artificial Intelligence for Scientific Research [2.4700789675440524]
We estimate both the direct use of AI and the potential benefit of AI in scientific research.
We find that the use of AI in research is widespread throughout the sciences, growing especially rapidly since 2015.
Our analysis reveals considerable potential for AI to benefit numerous scientific fields, yet a notable disconnect exists between AI education and its research applications.
arXiv Detail & Related papers (2023-04-17T08:08:50Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Towards a Science of Human-AI Decision Making: A Survey of Empirical
Studies [22.214709837295906]
There is growing interest in the research community to augment human decision making with AI assistance.
The emerging field of human-AI decision making must embrace empirical approaches to form a foundational understanding of how humans interact and work with AI.
arXiv Detail & Related papers (2021-12-21T19:00:02Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.