Invariant Scattering Transform for Medical Imaging
- URL: http://arxiv.org/abs/2304.10582v2
- Date: Wed, 31 May 2023 17:02:48 GMT
- Title: Invariant Scattering Transform for Medical Imaging
- Authors: Md Manjurul Ahsan, Shivakumar Raman, Zahed Siddique
- Abstract summary: Invariant Scattering Transform (IST) technique has become popular for medical image analysis.
IST aims to be invariant to transformations that are common in medical images.
IST can be integrated into machine learning algorithms for disease detection, diagnosis, and treatment planning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the years, the Invariant Scattering Transform (IST) technique has become
popular for medical image analysis, including using wavelet transform
computation using Convolutional Neural Networks (CNN) to capture patterns'
scale and orientation in the input signal. IST aims to be invariant to
transformations that are common in medical images, such as translation,
rotation, scaling, and deformation, used to improve the performance in medical
imaging applications such as segmentation, classification, and registration,
which can be integrated into machine learning algorithms for disease detection,
diagnosis, and treatment planning. Additionally, combining IST with deep
learning approaches has the potential to leverage their strengths and enhance
medical image analysis outcomes. This study provides an overview of IST in
medical imaging by considering the types of IST, their application,
limitations, and potential scopes for future researchers and practitioners.
Related papers
- Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Invariant Scattering Transform for Medical Imaging [0.0]
Invariant scattering transform introduces new area of research that merges the signal processing with deep learning for computer vision.
Deep Learning algorithms are able to solve a variety of problems in medical sector.
During pandemic back in 2020, machine learning and deep learning has played a critical role to detect COVID-19.
arXiv Detail & Related papers (2023-07-07T19:40:42Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Graph Convolutional Networks for Multi-modality Medical Imaging:
Methods, Architectures, and Clinical Applications [13.940158397866625]
Development of graph convolutional networks (GCNs) has spawned a new wave of research in medical imaging analysis.
GCNs capabilities have spawned a new wave of research in medical imaging analysis with the overarching goal of improving quantitative disease understanding, monitoring, and diagnosis.
arXiv Detail & Related papers (2022-02-17T22:03:59Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Roto-Translation Equivariant Convolutional Networks: Application to
Histopathology Image Analysis [11.568329857588099]
We propose a framework to encode the geometric structure of the special Euclidean motion group SE(2) in convolutional networks.
We show that consistent increase of performances can be achieved when using the proposed framework.
arXiv Detail & Related papers (2020-02-20T13:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.