U-Net in Medical Image Segmentation: A Review of Its Applications Across Modalities
- URL: http://arxiv.org/abs/2412.02242v1
- Date: Tue, 03 Dec 2024 08:11:06 GMT
- Title: U-Net in Medical Image Segmentation: A Review of Its Applications Across Modalities
- Authors: Fnu Neha, Deepshikha Bhati, Deepak Kumar Shukla, Sonavi Makarand Dalvi, Nikolaos Mantzou, Safa Shubbar,
- Abstract summary: Recent advancements in Artificial Intelligence (AI) and Deep Learning (DL) have transformed medical image segmentation (MIS)
These models enable efficient, precise pixel-wise classification across various imaging modalities.
This review explores various medical imaging techniques, examines the U-Net architectures and their adaptations, and discusses their application across different modalities.
- Score: 0.0
- License:
- Abstract: Medical imaging is essential in healthcare to provide key insights into patient anatomy and pathology, aiding in diagnosis and treatment. Non-invasive techniques such as X-ray, Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Ultrasound (US), capture detailed images of organs, tissues, and abnormalities. Effective analysis of these images requires precise segmentation to delineate regions of interest (ROI), such as organs or lesions. Traditional segmentation methods, relying on manual feature-extraction, are labor-intensive and vary across experts. Recent advancements in Artificial Intelligence (AI) and Deep Learning (DL), particularly convolutional models such as U-Net and its variants (U-Net++ and U-Net 3+), have transformed medical image segmentation (MIS) by automating the process and enhancing accuracy. These models enable efficient, precise pixel-wise classification across various imaging modalities, overcoming the limitations of manual segmentation. This review explores various medical imaging techniques, examines the U-Net architectures and their adaptations, and discusses their application across different modalities. It also identifies common challenges in MIS and proposes potential solutions.
Related papers
- Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
Recent breakthroughs in deep learning, a subset of artificial intelligence, have markedly revolutionized the analysis of medical pictures.
CNNs have demonstrated remarkable proficiency in autonomously learning features from multidimensional medical pictures.
These models have been utilized across multiple medical disciplines, including pathology, radiology, ophthalmology, and cardiology.
arXiv Detail & Related papers (2024-10-18T02:57:14Z) - HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGym aims to foster whole slide image diagnosis by mimicking the real-life processes of doctors.
We offer various scenarios for different organs and cancers, including both WSI-based and selected region-based scenarios.
arXiv Detail & Related papers (2024-08-16T17:19:07Z) - Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - A Comparative Analysis of U-Net-based models for Segmentation of Cardiac MRI [0.0]
This paper aims to explore the application of deep learning techniques in the semantic segmentation of Cardiac short-axis MRI (Magnetic Resonance Imaging) images.
The focus centers on implementing various architectures that are derivatives of U-Net, to effectively isolate specific parts of the heart for comprehensive anatomical and functional analysis.
arXiv Detail & Related papers (2024-01-18T13:51:20Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Medical Image Segmentation on MRI Images with Missing Modalities: A
Review [3.9548535445908928]
The main goal of this research is to offer a performance evaluation of missing modality compensating networks.
Various approaches have been developed over time to mitigate this problem's negative implications.
arXiv Detail & Related papers (2022-03-11T19:33:26Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.