論文の概要: A Review of Symbolic, Subsymbolic and Hybrid Methods for Sequential Decision Making
- arxiv url: http://arxiv.org/abs/2304.10590v2
- Date: Fri, 5 Jul 2024 17:10:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 03:12:39.056319
- Title: A Review of Symbolic, Subsymbolic and Hybrid Methods for Sequential Decision Making
- Title(参考訳): 逐次決定のためのシンボリック, サブシンボリック, ハイブリッド手法の検討
- Authors: Carlos Núñez-Molina, Pablo Mesejo, Juan Fernández-Olivares,
- Abstract要約: 本稿では、逐次決定過程(SDP)を解くためのAP、RLおよびハイブリッド手法について概説する。
知識表現(シンボリック、サブシンボリック、または組み合わせ)に焦点を当てている。
ニューロシンボリックAIは、APとRLをハイブリッドな知識表現と組み合わせることで、SDMに有望なアプローチをもたらすと結論付けている。
- 参考スコア(独自算出の注目度): 9.176056742068814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of Sequential Decision Making (SDM), two paradigms have historically vied for supremacy: Automated Planning (AP) and Reinforcement Learning (RL). In the spirit of reconciliation, this article reviews AP, RL and hybrid methods (e.g., novel learn to plan techniques) for solving Sequential Decision Processes (SDPs), focusing on their knowledge representation: symbolic, subsymbolic, or a combination. Additionally, it also covers methods for learning the SDP structure. Finally, we compare the advantages and drawbacks of the existing methods and conclude that neurosymbolic AI poses a promising approach for SDM, since it combines AP and RL with a hybrid knowledge representation.
- Abstract(参考訳): SDM(Sequential Decision Making)の分野では、自動計画(AP)と強化学習(RL)という2つのパラダイムが歴史的に優位を保っている。
和解の精神において、本論文は、記号、サブシンボリック、または組み合わせという知識表現に焦点をあて、逐次決定プロセス(SDP)を解決するためのAP、RLおよびハイブリッド手法(例えば、新しいプランニング手法)をレビューする。
さらに、SDP構造を学習する手法についても触れている。
最後に、既存の手法の利点と欠点を比較し、ニューロシンボリックAIはAPとRLをハイブリッドな知識表現と組み合わせることで、SDMに有望なアプローチをもたらすと結論付ける。
関連論文リスト
- DIAR: Diffusion-model-guided Implicit Q-learning with Adaptive Revaluation [10.645244994430483]
本稿では,適応再評価フレームワークを用いた拡散モデル誘導型インプリシットQ-ラーニングを導入したオフライン強化学習(オフラインRL)手法を提案する。
拡散モデルを利用して状態-作用系列の分布を学習し、よりバランスよく適応的な意思決定のために値関数を組み込む。
Maze2D、AntMaze、Kitchenといったタスクで示されているように、DIARは長い水平、スパース・リワード環境において、常に最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2024-10-15T07:09:56Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Bridging State and History Representations: Understanding Self-Predictive RL [24.772140132462468]
マルコフ決定過程(MDPs)と部分的に観測可能なマルコフ決定過程(POMDPs)のすべての強化学習(RL)手法の中核に表現がある
状態と歴史を抽象化するこれらの明らかに異なる方法やフレームワークの多くは、実際、自己予測的抽象化の共通概念に基づいています。
我々は、自己予測表現の学習において、停止段階技術のような広く採用されている目的と最適化に関する理論的洞察を提供する。
論文 参考訳(メタデータ) (2024-01-17T00:47:43Z) - Towards a Unified Framework for Sequential Decision Making [3.695911743333272]
SDM(Sequential Decision Making)のための一般的なフレームワークを提供する。
SDMタスクをトレーニングの集合として定式化し、マルコフ決定過程(MDP)をテストする。
我々は、SDMタスクとメソッドの興味深い特性を計算するための公式とアルゴリズムのセットを導出する。
論文 参考訳(メタデータ) (2023-10-03T16:01:06Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
本稿では、REXと呼ばれるAIエージェントのための高速探索およびeXploitationのための改良されたアプローチを提案する。
REXは追加の報酬層を導入し、アッパー信頼境界(UCB)スコアに似た概念を統合し、より堅牢で効率的なAIエージェントのパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-07-18T04:26:33Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
我々は,MARL(SAMA)における意味的アライズされたタスク分解という,新しい「不整合」意思決定手法を提案する。
SAMAは、潜在的な目標を示唆し、適切な目標分解とサブゴールアロケーションを提供するとともに、自己回帰に基づくリプランニングを提供する、チェーン・オブ・シントによる事前訓練された言語モデルを促進する。
SAMAは, 最先端のASG法と比較して, 試料効率に有意な優位性を示す。
論文 参考訳(メタデータ) (2023-05-18T10:37:54Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
対照的な自己指導型学習は、(深層)強化学習(RL)の実践にうまく統合されている
我々は,低ランク遷移を伴うマルコフ決定過程(MDP)とマルコフゲーム(MG)のクラスにおいて,コントラスト学習によってRLをどのように強化できるかを検討する。
オンライン環境下では,MDPやMGのオンラインRLアルゴリズムと対照的な損失を生かした,新しい高信頼境界(UCB)型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T17:29:08Z) - Evaluation of Self-taught Learning-based Representations for Facial
Emotion Recognition [62.30451764345482]
この研究は、顔の感情認識のための自己学習の概念を通じて得られた教師なし表現を生成するための様々な戦略を記述する。
このアイデアは、オートエンコーダの初期化、アーキテクチャ、トレーニングデータを変化させることで、多様性を促進する補完的な表現を作ることである。
Jaffe と Cohn-Kanade のデータセットに対する残余のサブジェクトアウトプロトコルによる実験結果から,提案した多種多様な表現に基づく FER 手法が最先端のアプローチと好適に比較できることが示唆された。
論文 参考訳(メタデータ) (2022-04-26T22:48:15Z) - Resource allocation optimization using artificial intelligence methods
in various computing paradigms: A Review [7.738849852406729]
本稿では,資源配分最適化のための人工知能(AI)手法の適用について,総合的な文献レビューを行う。
我々の知る限りでは、異なる計算パラダイムにおけるAIベースのリソース割り当てアプローチに関する既存のレビューはない。
論文 参考訳(メタデータ) (2022-03-23T10:31:15Z) - Model-based Reinforcement Learning: A Survey [2.564530030795554]
マルコフ決定過程 (Markov Decision Process, MDP) の最適化として一般に形式化された逐次意思決定は、人工知能において重要な課題である。
この問題の2つの主要なアプローチは強化学習(RL)と計画である。
本稿では、モデルベース強化学習として知られる両分野の統合について調査する。
論文 参考訳(メタデータ) (2020-06-30T12:10:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。