Multi-domain learning CNN model for microscopy image classification
- URL: http://arxiv.org/abs/2304.10616v1
- Date: Thu, 20 Apr 2023 19:32:23 GMT
- Title: Multi-domain learning CNN model for microscopy image classification
- Authors: Duc Hoa Tran, Michel Meunier, Farida Cheriet
- Abstract summary: We present a multi-domain learning architecture for the classification of microscopy images.
Unlike previous methods that are computationally intensive, we have developed a compact model, called Mobincep.
It surpasses state-of-the-art results and is robust for limited labeled data.
- Score: 3.2835754110596236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For any type of microscopy image, getting a deep learning model to work well
requires considerable effort to select a suitable architecture and time to
train it. As there is a wide range of microscopes and experimental setups,
designing a single model that can apply to multiple imaging domains, instead of
having multiple per-domain models, becomes more essential. This task is
challenging and somehow overlooked in the literature. In this paper, we present
a multi-domain learning architecture for the classification of microscopy
images that differ significantly in types and contents. Unlike previous methods
that are computationally intensive, we have developed a compact model, called
Mobincep, by combining the simple but effective techniques of depth-wise
separable convolution and the inception module. We also introduce a new
optimization technique to regulate the latent feature space during training to
improve the network's performance. We evaluated our model on three different
public datasets and compared its performance in single-domain and
multiple-domain learning modes. The proposed classifier surpasses
state-of-the-art results and is robust for limited labeled data. Moreover, it
helps to eliminate the burden of designing a new network when switching to new
experiments.
Related papers
- MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - Multi-Domain Learning with Modulation Adapters [33.54630534228469]
Multi-domain learning aims to handle related tasks, such as image classification across multiple domains, simultaneously.
Modulation Adapters update the convolutional weights of the model in a multiplicative manner for each task.
Our approach yields excellent results, with accuracies that are comparable to or better than those of existing state-of-the-art approaches.
arXiv Detail & Related papers (2023-07-17T14:40:16Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient
Image Classification [3.9310727060473476]
This paper proposes a new genetic programming-based evolutionary deep learning approach to data-efficient image classification.
The new approach can automatically evolve variable-length models using many important operators from both image and classification domains.
A flexible multi-layer representation enables the new approach to automatically construct shallow or deep models/trees for different tasks.
arXiv Detail & Related papers (2022-09-27T08:10:16Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z) - HAMIL: Hierarchical Aggregation-Based Multi-Instance Learning for
Microscopy Image Classification [4.566276053984716]
Multi-instance learning is common for computer vision tasks, especially in biomedical image processing.
In this study, we propose a hierarchical aggregation network for multi-instance learning, called HAMIL.
The hierarchical aggregation protocol enables feature fusion in a defined order, and the simple convolutional aggregation units lead to an efficient and flexible architecture.
arXiv Detail & Related papers (2021-03-17T16:34:08Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.