Edge-Aware Image Color Appearance and Difference Modeling
- URL: http://arxiv.org/abs/2304.10669v1
- Date: Thu, 20 Apr 2023 22:55:16 GMT
- Title: Edge-Aware Image Color Appearance and Difference Modeling
- Authors: Abhinau K. Venkataramanan
- Abstract summary: Humans have developed a keen sense of color and are able to detect subtle differences in appearance.
Applying contrast sensitivity functions and local adaptation rules in an edge-aware manner improves image difference predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The perception of color is one of the most important aspects of human vision.
From an evolutionary perspective, the accurate perception of color is crucial
to distinguishing friend from foe, and food from fatal poison. As a result,
humans have developed a keen sense of color and are able to detect subtle
differences in appearance, while also robustly identifying colors across
illumination and viewing conditions. In this paper, we shall briefly review
methods for adapting traditional color appearance and difference models to
complex image stimuli, and propose mechanisms to improve their performance. In
particular, we find that applying contrast sensitivity functions and local
adaptation rules in an edge-aware manner improves image difference predictions.
Related papers
- When Does Perceptual Alignment Benefit Vision Representations? [76.32336818860965]
We investigate how aligning vision model representations to human perceptual judgments impacts their usability.
We find that aligning models to perceptual judgments yields representations that improve upon the original backbones across many downstream tasks.
Our results suggest that injecting an inductive bias about human perceptual knowledge into vision models can contribute to better representations.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - Data Augmentation via Latent Diffusion for Saliency Prediction [67.88936624546076]
Saliency prediction models are constrained by the limited diversity and quantity of labeled data.
We propose a novel data augmentation method for deep saliency prediction that edits natural images while preserving the complexity and variability of real-world scenes.
arXiv Detail & Related papers (2024-09-11T14:36:24Z) - Comparative Analysis Of Color Models For Human Perception And Visual Color Difference [0.0]
The study evaluates color models such as RGB, HSV, HSL, XYZ, CIELAB, and CIELUV to assess their effectiveness in accurately representing how humans perceive color.
In image processing, accurate assessment of color difference is essential for applications ranging from digital design to quality control.
arXiv Detail & Related papers (2024-06-27T20:41:49Z) - A Psychological Study: Importance of Contrast and Luminance in Color to
Grayscale Mapping [2.1481347363838017]
Grayscale images are essential in image processing and computer vision tasks.
To evaluate and compare different decolorization algorithms, we designed a psychological experiment.
We conducted a comparison between two types of algorithms: perceptual-based simple color space conversion algorithms, and (ii) spatial contrast-based algorithms.
arXiv Detail & Related papers (2024-02-07T04:51:14Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
We study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones.
Our work provides a complementary angle to dermatology AI for improving skin disease detection.
arXiv Detail & Related papers (2024-01-24T07:45:24Z) - ColorSense: A Study on Color Vision in Machine Visual Recognition [57.916512479603064]
We collect 110,000 non-trivial human annotations of foreground and background color labels from visual recognition benchmarks.
We validate the use of our datasets by demonstrating that the level of color discrimination has a dominating effect on the performance of machine perception models.
Our findings suggest that object recognition tasks such as classification and localization are susceptible to color vision bias.
arXiv Detail & Related papers (2022-12-16T18:51:41Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings.
We introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans.
The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers' attention.
arXiv Detail & Related papers (2022-09-22T22:27:08Z) - Deep Collaborative Multi-Modal Learning for Unsupervised Kinship
Estimation [53.62256887837659]
Kinship verification is a long-standing research challenge in computer vision.
We propose a novel deep collaborative multi-modal learning (DCML) to integrate the underlying information presented in facial properties.
Our DCML method is always superior to some state-of-the-art kinship verification methods.
arXiv Detail & Related papers (2021-09-07T01:34:51Z) - Personalizing image enhancement for critical visual tasks: improved
legibility of papyri using color processing and visual illusions [0.0]
Methods: Novel enhancement algorithms based on color processing and visual illusions are compared to classic methods in a user experience experiment.
Users exhibited a broad behavioral spectrum, under the influence of factors such as personality and social conditioning, tasks and application domains, expertise level and image quality, and affordances of software, hardware, and interfaces.
arXiv Detail & Related papers (2021-03-11T23:48:17Z) - Color and Edge-Aware Adversarial Image Perturbations [0.0]
We develop two new methods for constructing adversarial perturbations.
The Edge-Aware method reduces the magnitude of perturbations permitted in smooth regions of an image.
The Color-Aware and Edge-Aware methods can also be implemented simultaneously.
arXiv Detail & Related papers (2020-08-28T03:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.