DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection
- URL: http://arxiv.org/abs/2401.13280v1
- Date: Wed, 24 Jan 2024 07:45:24 GMT
- Title: DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection
- Authors: Ming-Chang Chiu, Yingfei Wang, Yen-Ju Kuo, Pin-Yu Chen
- Abstract summary: We study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones.
Our work provides a complementary angle to dermatology AI for improving skin disease detection.
- Score: 51.92255321684027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin tone as a demographic bias and inconsistent human labeling poses
challenges in dermatology AI. We take another angle to investigate color
contrast's impact, beyond skin tones, on malignancy detection in skin disease
datasets: We hypothesize that in addition to skin tones, the color difference
between the lesion area and skin also plays a role in malignancy detection
performance of dermatology AI models. To study this, we first propose a robust
labeling method to quantify color contrast scores of each image and validate
our method by showing small labeling variations. More importantly, applying our
method to \textit{the only} diverse-skin tone and pathologically-confirmed skin
disease dataset DDI, yields \textbf{DDI-CoCo Dataset}, and we observe a
performance gap between the high and low color difference groups. This
disparity remains consistent across various state-of-the-art (SoTA) image
classification models, which supports our hypothesis. Furthermore, we study the
interaction between skin tone and color difference effects and suggest that
color difference can be an additional reason behind model performance bias
between skin tones. Our work provides a complementary angle to dermatology AI
for improving skin disease detection.
Related papers
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
Two main challenges for these approaches are the accurate prediction of contrast enhancement and the synthesis of realistic images.
We address both challenges by utilizing the contrast signal encoded in the subtraction images of pre-contrast and post-contrast image pairs.
We demonstrate the effectiveness of our approach on synthetic and real datasets using various scanners, field strengths, and contrast agents.
arXiv Detail & Related papers (2024-03-06T08:35:29Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Revisiting Skin Tone Fairness in Dermatological Lesion Classification [3.247628857305427]
We review and compare four ITA-based approaches of skin tone classification on the ISIC18 dataset.
Our analyses reveal a high disagreement among previously published studies demonstrating the risks of ITA-based skin tone estimation methods.
We investigate the causes of such large discrepancy among these approaches and find that the lack of diversity in the ISIC18 dataset limits its use as a testbed for fairness analysis.
arXiv Detail & Related papers (2023-08-18T15:59:55Z) - PalGAN: Image Colorization with Palette Generative Adversarial Networks [51.59276436217957]
We propose a new GAN-based colorization approach PalGAN, integrated with palette estimation and chromatic attention.
PalGAN outperforms state-of-the-arts in quantitative evaluation and visual comparison, delivering notable diverse, contrastive, and edge-preserving appearances.
arXiv Detail & Related papers (2022-10-20T12:28:31Z) - FairDisCo: Fairer AI in Dermatology via Disentanglement Contrastive
Learning [11.883809920936619]
We propose FairDisCo, a disentanglement deep learning framework with contrastive learning.
We compare FairDisCo to three fairness methods, namely, resampling, reweighting, and attribute-aware.
We adapt two fairness-based metrics DPM and EOM for our multiple classes and sensitive attributes task, highlighting the skin-type bias in skin lesion classification.
arXiv Detail & Related papers (2022-08-22T01:54:23Z) - Automatic Facial Skin Feature Detection for Everyone [60.31670960526022]
We present an automatic facial skin feature detection method that works across a variety of skin tones and age groups for selfies in the wild.
To be specific, we annotate the locations of acne, pigmentation, and wrinkle for selfie images with different skin tone colors, severity levels, and lighting conditions.
arXiv Detail & Related papers (2022-03-30T04:52:54Z) - Disparities in Dermatology AI Performance on a Diverse, Curated Clinical
Image Set [10.212881174103996]
We show that state-of-the-art AI models perform substantially worse on Diverse Dermatology Images dataset.
We find that dermatologists, who typically provide visual labels for AI training and test datasets, also perform worse on images of dark skin tones and uncommon diseases.
arXiv Detail & Related papers (2022-03-15T20:33:23Z) - EdgeMixup: Improving Fairness for Skin Disease Classification and
Segmentation [9.750368551427494]
Skin lesions can be an early indicator of a wide range of infectious and other diseases.
The use of deep learning (DL) models to diagnose skin lesions has great potential in assisting clinicians with prescreening patients.
These models often learn biases inherent in training data, which can lead to a performance gap in the diagnosis of people with light and/or dark skin tones.
arXiv Detail & Related papers (2022-02-28T15:33:31Z) - Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin
Lesion Classification [5.71097144710995]
We use a modified variational autoencoder to uncover skin tone bias in datasets commonly used as benchmarks.
We propose an efficient yet effective algorithm for automatically labelling the skin tone of lesion images.
We subsequently use two leading bias unlearning techniques to mitigate skin tone bias.
arXiv Detail & Related papers (2022-02-06T18:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.