論文の概要: Interactive System-wise Anomaly Detection
- arxiv url: http://arxiv.org/abs/2304.10704v1
- Date: Fri, 21 Apr 2023 02:20:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 16:06:03.219309
- Title: Interactive System-wise Anomaly Detection
- Title(参考訳): 対話型システム回り異常検出
- Authors: Guanchu Wang and Ninghao Liu and Daochen Zha and Xia Hu
- Abstract要約: 異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
- 参考スコア(独自算出の注目度): 66.3766756452743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection, where data instances are discovered containing feature
patterns different from the majority, plays a fundamental role in various
applications. However, it is challenging for existing methods to handle the
scenarios where the instances are systems whose characteristics are not readily
observed as data. Appropriate interactions are needed to interact with the
systems and identify those with abnormal responses. Detecting system-wise
anomalies is a challenging task due to several reasons including: how to
formally define the system-wise anomaly detection problem; how to find the
effective activation signal for interacting with systems to progressively
collect the data and learn the detector; how to guarantee stable training in
such a non-stationary scenario with real-time interactions? To address the
challenges, we propose InterSAD (Interactive System-wise Anomaly Detection).
Specifically, first, we adopt Markov decision process to model the interactive
systems, and define anomalous systems as anomalous transition and anomalous
reward systems. Then, we develop an end-to-end approach which includes an
encoder-decoder module that learns system embeddings, and a policy network to
generate effective activation for separating embeddings of normal and anomaly
systems. Finally, we design a training method to stabilize the learning
process, which includes a replay buffer to store historical interaction data
and allow them to be re-sampled. Experiments on two benchmark environments,
including identifying the anomalous robotic systems and detecting user data
poisoning in recommendation models, demonstrate the superiority of InterSAD
compared with state-of-the-art baselines methods.
- Abstract(参考訳): 多数派とは異なる特徴パターンを含むデータインスタンスが検出される異常検出は、さまざまなアプリケーションにおいて基本的な役割を果たす。
しかし、既存の手法では、特性がデータとして容易に観察できないシステムである場合のシナリオを扱うことは困難である。
適切な相互作用は、システムと相互作用し、異常反応のあるものを特定するために必要である。
システム側異常検出問題を形式的に定義する方法、データ収集と検出を漸進的に行うシステムとのインタラクションに有効なアクティベーション信号を見つける方法、リアルタイムインタラクションを伴う非定常シナリオにおける安定したトレーニングの保証方法など、いくつかの理由から、システム側異常検出は難しい課題である。
この課題に対処するため,Interactive System-wise Anomaly Detection (Interactive System-wise Anomaly Detection)を提案する。
具体的には,まず,対話型システムのモデル化にマルコフ決定プロセスを採用し,異常な遷移系と異常な報酬系とを定義する。
次に,システム組込みを学習するエンコーダ・デコーダモジュールと,正規系と異常系の組込みを分離する効果的なアクティベーションを生成するポリシネットワークを含むエンドツーエンド手法を開発した。
最後に,過去のインタラクションデータを格納し,再サンプリングを可能にするリプレイバッファを含む,学習プロセスの安定化のためのトレーニング方法を設計する。
異常ロボットシステムの同定とレコメンデーションモデルにおけるユーザデータ中毒の検出を含む2つのベンチマーク環境における実験は、最先端のベースライン法と比較して、sadの優れていることを示している。
関連論文リスト
- Heterogeneous Anomaly Detection for Software Systems via Semi-supervised
Cross-modal Attention [29.654681594903114]
ヘテロジニアスデータに基づいてシステム異常を識別する,最初のエンドツーエンドの半教師付きアプローチであるHadesを提案する。
当社のアプローチでは,ログセマンティクスとメトリックパターンを融合させることで,システムステータスのグローバルな表現を学ぶために階層的アーキテクチャを採用している。
我々はHuawei Cloudの大規模シミュレーションデータとデータセットに基づいてHadesを広範囲に評価する。
論文 参考訳(メタデータ) (2023-02-14T09:02:11Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
2007年のバイオセキュリティ・マルチモーダル・アセスメント・キャンペーンにおいて,ATVS-UAM融合手法を品質ベースで評価し,評価を行った。
我々のアプローチは線形ロジスティック回帰に基づいており、融合したスコアはログライクな比率になる傾向にある。
その結果,提案手法はルールベースの核融合方式よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-11-24T12:11:22Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Intrinsic Anomaly Detection for Multi-Variate Time Series [33.199682596741276]
固有の異常は、環境を表す時系列と、その環境に置かれるシステムの内部状態を表す時系列の間の機能的依存構造の変化である。
これらのことは、システムの状態の変化と予期せぬ変化、すなわち環境の影響から逸脱するシステムの変化を区別できない既存の異常検出手法の欠点に対処する。
我々の最も有望なアプローチは、完全に教師なしであり、敵対的学習と時系列表現学習を組み合わせることで、ラベルの空間性や主観性といった問題に対処する。
論文 参考訳(メタデータ) (2022-06-29T00:51:44Z) - Data-driven Residual Generation for Early Fault Detection with Limited
Data [4.129225533930966]
多くの複雑なシステムでは、システムのための高精度なモデルを開発することは不可能である。
データ駆動型ソリューションは、いくつかの実践的な理由から、産業システムにおいて大きな注目を集めている。
モデルに基づく手法とは異なり、圧力や電圧などの時系列測定を他の情報源と組み合わせることが直接の前進である。
論文 参考訳(メタデータ) (2021-09-28T03:18:03Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
本稿では,よく知られたStroopテストの視覚的修正版において,様々なタスクと潜在的な競合事象を特定するための計算手法を提案する。
統計的分析により、選択された変数は、異なるシナリオにおける注意負荷の変動を特徴付けることができることが示された。
機械学習技術は,異なるタスクを分類精度良く区別できることを示す。
論文 参考訳(メタデータ) (2020-02-03T17:46:13Z) - Counter-example Guided Learning of Bounds on Environment Behavior [11.357397596759172]
本稿では, 環境の正確なモデルなしで, 仕様適合性を評価可能なデータ駆動型ソリューションを提案する。
私たちのアプローチでは、データとシステムの望ましい振る舞いの仕様を使用して、環境の振る舞いの保守的な反応性境界を学習する。
論文 参考訳(メタデータ) (2020-01-20T19:58:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。