Contrastive Language, Action, and State Pre-training for Robot Learning
- URL: http://arxiv.org/abs/2304.10782v1
- Date: Fri, 21 Apr 2023 07:19:33 GMT
- Title: Contrastive Language, Action, and State Pre-training for Robot Learning
- Authors: Krishan Rana, Andrew Melnik and Niko S\"underhauf
- Abstract summary: We introduce a method for unifying language, action, and state information in a shared embedding space to facilitate a range of downstream tasks in robot learning.
Our method, Contrastive Language, Action, and State Pre-training (CLASP), extends the CLIP formulation by incorporating distributional learning, capturing the inherent complexities and one-to-many relationships in behaviour-text alignment.
We demonstrate the utility of our method for the following downstream tasks: zero-shot text-behaviour retrieval, captioning unseen robot behaviours, and learning a behaviour prior to language-conditioned reinforcement learning.
- Score: 1.1000499414131326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a method for unifying language, action, and state
information in a shared embedding space to facilitate a range of downstream
tasks in robot learning. Our method, Contrastive Language, Action, and State
Pre-training (CLASP), extends the CLIP formulation by incorporating
distributional learning, capturing the inherent complexities and one-to-many
relationships in behaviour-text alignment. By employing distributional outputs
for both text and behaviour encoders, our model effectively associates diverse
textual commands with a single behaviour and vice-versa. We demonstrate the
utility of our method for the following downstream tasks: zero-shot
text-behaviour retrieval, captioning unseen robot behaviours, and learning a
behaviour prior for language-conditioned reinforcement learning. Our
distributional encoders exhibit superior retrieval and captioning performance
on unseen datasets, and the ability to generate meaningful exploratory
behaviours from textual commands, capturing the intricate relationships between
language, action, and state. This work represents an initial step towards
developing a unified pre-trained model for robotics, with the potential to
generalise to a broad range of downstream tasks.
Related papers
- Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - Interpretable Robotic Manipulation from Language [11.207620790833271]
We introduce an explainable behavior cloning agent, named Ex-PERACT, specifically designed for manipulation tasks.
At the top level, the model is tasked with learning a discrete skill code, while at the bottom level, the policy network translates the problem into a voxelized grid and maps the discretized actions to voxel grids.
We evaluate our method across eight challenging manipulation tasks utilizing the RLBench benchmark, demonstrating that Ex-PERACT not only achieves competitive policy performance but also effectively bridges the gap between human instructions and machine execution in complex environments.
arXiv Detail & Related papers (2024-05-27T11:02:21Z) - Object-Centric Instruction Augmentation for Robotic Manipulation [29.491990994901666]
We introduce the textitObject-Centric Instruction Augmentation (OCI) framework to augment highly semantic and information-dense language instruction with position cues.
We utilize a Multi-modal Large Language Model (MLLM) to weave knowledge of object locations into natural language instruction.
We demonstrate that robotic manipulator imitation policies trained with our enhanced instructions outperform those relying solely on traditional language instructions.
arXiv Detail & Related papers (2024-01-05T13:54:45Z) - LARG, Language-based Automatic Reward and Goal Generation [8.404316955848602]
We develop an approach that converts a text-based task description into its corresponding reward and goal-generation functions.
We evaluate our approach for robotic manipulation and demonstrate its ability to train and execute policies in a scalable manner.
arXiv Detail & Related papers (2023-06-19T14:52:39Z) - Learning Flexible Translation between Robot Actions and Language
Descriptions [16.538887534958555]
We propose a paired gated autoencoders (PGAE) for flexible translation between robot actions and language descriptions.
We train our model in an end-to-end fashion by pairing each action with appropriate descriptions that contain a signal informing about the translation direction.
With the option to use a pretrained language model as the language encoder, our model has the potential to recognise unseen natural language input.
arXiv Detail & Related papers (2022-07-15T12:37:05Z) - Skill Induction and Planning with Latent Language [94.55783888325165]
We formulate a generative model of action sequences in which goals generate sequences of high-level subtask descriptions.
We describe how to train this model using primarily unannotated demonstrations by parsing demonstrations into sequences of named high-level subtasks.
In trained models, the space of natural language commands indexes a library of skills; agents can use these skills to plan by generating high-level instruction sequences tailored to novel goals.
arXiv Detail & Related papers (2021-10-04T15:36:32Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction.
We propose to leverage offline robot datasets with crowd-sourced natural language labels.
We find that our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%.
arXiv Detail & Related papers (2021-09-02T17:42:13Z) - Language-Conditioned Imitation Learning for Robot Manipulation Tasks [39.40937105264774]
We introduce a method for incorporating unstructured natural language into imitation learning.
At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent.
The training process then interrelates these two modalities to encode the correlations between language, perception, and motion.
The resulting language-conditioned visuomotor policies can be conditioned at runtime on new human commands and instructions.
arXiv Detail & Related papers (2020-10-22T21:49:08Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z) - On the interaction between supervision and self-play in emergent
communication [82.290338507106]
We investigate the relationship between two categories of learning signals with the ultimate goal of improving sample efficiency.
We find that first training agents via supervised learning on human data followed by self-play outperforms the converse.
arXiv Detail & Related papers (2020-02-04T02:35:19Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP)
In this paper, we explore the landscape of introducing transfer learning techniques for NLP by a unified framework that converts all text-based language problems into a text-to-text format.
arXiv Detail & Related papers (2019-10-23T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.