Denial-of-Service or Fine-Grained Control: Towards Flexible Model Poisoning Attacks on Federated Learning
- URL: http://arxiv.org/abs/2304.10783v3
- Date: Thu, 26 Sep 2024 02:44:29 GMT
- Title: Denial-of-Service or Fine-Grained Control: Towards Flexible Model Poisoning Attacks on Federated Learning
- Authors: Hangtao Zhang, Zeming Yao, Leo Yu Zhang, Shengshan Hu, Chao Chen, Alan Liew, Zhetao Li,
- Abstract summary: Federated learning (FL) is vulnerable to poisoning attacks, where adversaries corrupt the global aggregation results and cause denial-of-service (DoS)
We propose a Flexible Model Poisoning Attack (FMPA) that can achieve versatile attack goals.
Experiments show that FMPA significantly decreases the global accuracy, outperforming six state-of-the-art attacks.
- Score: 20.737871279189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is vulnerable to poisoning attacks, where adversaries corrupt the global aggregation results and cause denial-of-service (DoS). Unlike recent model poisoning attacks that optimize the amplitude of malicious perturbations along certain prescribed directions to cause DoS, we propose a Flexible Model Poisoning Attack (FMPA) that can achieve versatile attack goals. We consider a practical threat scenario where no extra knowledge about the FL system (e.g., aggregation rules or updates on benign devices) is available to adversaries. FMPA exploits the global historical information to construct an estimator that predicts the next round of the global model as a benign reference. It then fine-tunes the reference model to obtain the desired poisoned model with low accuracy and small perturbations. Besides the goal of causing DoS, FMPA can be naturally extended to launch a fine-grained controllable attack, making it possible to precisely reduce the global accuracy. Armed with precise control, malicious FL service providers can gain advantages over their competitors without getting noticed, hence opening a new attack surface in FL other than DoS. Even for the purpose of DoS, experiments show that FMPA significantly decreases the global accuracy, outperforming six state-of-the-art attacks.
Related papers
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
This paper explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM)
To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm.
arXiv Detail & Related papers (2024-10-26T15:04:04Z) - PFAttack: Stealthy Attack Bypassing Group Fairness in Federated Learning [24.746843739848003]
Federated learning (FL) allows clients to collaboratively train a global model that makes unbiased decisions for different populations.
Previous studies have demonstrated that FL systems are vulnerable to model poisoning attacks.
We propose Profit-driven Fairness Attack (PFATTACK) which aims not to degrade global model accuracy but to bypass fairness mechanisms.
arXiv Detail & Related papers (2024-10-09T03:23:07Z) - Resilience in Online Federated Learning: Mitigating Model-Poisoning Attacks via Partial Sharing [6.957420925496431]
Federated learning (FL) allows training machine learning models on distributed data without compromising privacy.
FL is vulnerable to model-poisoning attacks where malicious clients tamper with their local models to manipulate the global model.
In this work, we investigate the resilience of the partial-sharing online FL (PSO-Fed) algorithm against such attacks.
arXiv Detail & Related papers (2024-03-19T19:15:38Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks [12.580891810557482]
Federated learning (FL) is attractive for pulling privacy-preserving distributed training data.
We propose a self-purified FL (SPFL) method that enables benign clients to exploit trusted historical features of locally purified model.
We experimentally demonstrate that SPFL outperforms state-of-the-art FL defenses against various poisoning attacks.
arXiv Detail & Related papers (2023-09-19T13:31:33Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks.
Recent works show generalization improvement with adversarial samples under novel threat models.
We propose a novel threat model called Joint Space Threat Model (JSTM)
Under JSTM, we develop novel adversarial attacks and defenses.
arXiv Detail & Related papers (2021-12-12T21:08:14Z) - FL-WBC: Enhancing Robustness against Model Poisoning Attacks in
Federated Learning from a Client Perspective [35.10520095377653]
Federated learning (FL) is a popular distributed learning framework that trains a global model through iterative communications between a central server and edge devices.
Recent works have demonstrated that FL is vulnerable to model poisoning attacks.
We propose a client-based defense, named White Blood Cell for Federated Learning (FL-WBC), which can mitigate model poisoning attacks.
arXiv Detail & Related papers (2021-10-26T17:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.