FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning
- URL: http://arxiv.org/abs/2312.04432v2
- Date: Tue, 16 Jan 2024 08:40:12 GMT
- Title: FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning
- Authors: Hossein Fereidooni, Alessandro Pegoraro, Phillip Rieger, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi
- Abstract summary: Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
- Score: 98.43475653490219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a collaborative learning paradigm allowing
multiple clients to jointly train a model without sharing their training data.
However, FL is susceptible to poisoning attacks, in which the adversary injects
manipulated model updates into the federated model aggregation process to
corrupt or destroy predictions (untargeted poisoning) or implant hidden
functionalities (targeted poisoning or backdoors). Existing defenses against
poisoning attacks in FL have several limitations, such as relying on specific
assumptions about attack types and strategies or data distributions or not
sufficiently robust against advanced injection techniques and strategies and
simultaneously maintaining the utility of the aggregated model. To address the
deficiencies of existing defenses, we take a generic and completely different
approach to detect poisoning (targeted and untargeted) attacks. We present
FreqFed, a novel aggregation mechanism that transforms the model updates (i.e.,
weights) into the frequency domain, where we can identify the core frequency
components that inherit sufficient information about weights. This allows us to
effectively filter out malicious updates during local training on the clients,
regardless of attack types, strategies, and clients' data distributions. We
extensively evaluate the efficiency and effectiveness of FreqFed in different
application domains, including image classification, word prediction, IoT
intrusion detection, and speech recognition. We demonstrate that FreqFed can
mitigate poisoning attacks effectively with a negligible impact on the utility
of the aggregated model.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning (FL) is a distributed machine learning diagram that enables multiple clients to collaboratively train a global model without sharing their private local data.
FL systems are vulnerable to attacks that are happening in malicious clients through data poisoning and model poisoning.
Existing defense methods typically focus on mitigating specific types of poisoning and are often ineffective against unseen types of attack.
arXiv Detail & Related papers (2024-08-05T20:27:45Z) - Poisoning with A Pill: Circumventing Detection in Federated Learning [33.915489514978084]
This paper proposes a generic and attack-agnostic augmentation approach designed to enhance the effectiveness and stealthiness of existing FL poisoning attacks against detection in FL.
Specifically, we employ a three-stage methodology that strategically constructs, generates, and injects poison into a pill during the FL training, named as pill construction, pill poisoning, and pill injection accordingly.
arXiv Detail & Related papers (2024-07-22T05:34:47Z) - FedRDF: A Robust and Dynamic Aggregation Function against Poisoning
Attacks in Federated Learning [0.0]
Federated Learning (FL) represents a promising approach to typical privacy concerns associated with centralized Machine Learning (ML) deployments.
Despite its well-known advantages, FL is vulnerable to security attacks such as Byzantine behaviors and poisoning attacks.
Our proposed approach was tested against various model poisoning attacks, demonstrating superior performance over state-of-the-art aggregation methods.
arXiv Detail & Related papers (2024-02-15T16:42:04Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
Federated learning systems are susceptible to poisoning attacks when malicious clients send false updates to the central server.
This paper proposes a new defense strategy, FedCPA (Federated learning with Critical Analysis)
Our attack-tolerant aggregation method is based on the observation that benign local models have similar sets of top-k and bottom-k critical parameters, whereas poisoned local models do not.
arXiv Detail & Related papers (2023-08-18T05:37:55Z) - Frequency Domain Adversarial Training for Robust Volumetric Medical
Segmentation [111.61781272232646]
It is imperative to ensure the robustness of deep learning models in critical applications such as, healthcare.
We present a 3D frequency domain adversarial attack for volumetric medical image segmentation models.
arXiv Detail & Related papers (2023-07-14T10:50:43Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers.
FL is vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model.
We propose textitFL-Defender as a method to combat FL targeted attacks.
arXiv Detail & Related papers (2022-07-02T16:04:46Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.