An Incomplete Tensor Tucker decomposition based Traffic Speed Prediction
Method
- URL: http://arxiv.org/abs/2304.10961v1
- Date: Fri, 21 Apr 2023 13:59:28 GMT
- Title: An Incomplete Tensor Tucker decomposition based Traffic Speed Prediction
Method
- Authors: Jiajia Mi
- Abstract summary: This work integrates the unique advantages of the proportional-integral-derivative (PID) controller into a Tucker decomposition based LFT model.
Experiments on two major city traffic road speed datasets show that the proposed model achieves significant efficiency gain and highly competitive prediction accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In intelligent transport systems, it is common and inevitable with missing
data. While complete and valid traffic speed data is of great importance to
intelligent transportation systems. A latent factorization-of-tensors (LFT)
model is one of the most attractive approaches to solve missing traffic data
recovery due to its well-scalability. A LFT model achieves optimization usually
via a stochastic gradient descent (SGD) solver, however, the SGD-based LFT
suffers from slow convergence. To deal with this issue, this work integrates
the unique advantages of the proportional-integral-derivative (PID) controller
into a Tucker decomposition based LFT model. It adopts two-fold ideas: a)
adopting tucker decomposition to build a LFT model for achieving a better
recovery accuracy. b) taking the adjusted instance error based on the PID
control theory into the SGD solver to effectively improve convergence rate. Our
experimental studies on two major city traffic road speed datasets show that
the proposed model achieves significant efficiency gain and highly competitive
prediction accuracy.
Related papers
- FT-MoE: Sustainable-learning Mixture of Experts Model for Fault-Tolerant Computing with Multiple Tasks [5.271397717002302]
We propose FT-MoE, a sustainable-learning mixture-of-experts model for fault-tolerant computing with multiple tasks.
We present a dual mixture of experts networks for high-accurate prediction for both fault detection and classification tasks.
We conduct extensive experiments on the FT benchmark to verify the effectiveness of FT-MoE.
arXiv Detail & Related papers (2025-04-29T05:44:59Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples.
We propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space.
arXiv Detail & Related papers (2025-03-19T07:04:24Z) - Water Quality Data Imputation via A Fast Latent Factorization of Tensors with PID-based Optimizer [21.261626027956737]
There are numerous missing values in water quality data due to sensor failure.
A Latent Factorization of PIDs (LFT) with Gradient Descent (SGD) proves to be an efficient imputation method.
This paper proposes a Fast Latent Factorization of PIDs (FLFT) model to tackle this issue.
arXiv Detail & Related papers (2025-03-10T07:22:54Z) - Efficient and Robust Freeway Traffic Speed Estimation under Oblique Grid using Vehicle Trajectory Data [19.01488741469791]
We propose an efficient and robust low-rank model for precise oblique traffic speed state estimation.
The proposed method achieves up to 12% improvement in Root Mean Square Error (RMSE) in the TSE scenarios.
It runs more than 20 times faster than the state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-11-06T15:13:40Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
Diffusion models are promising for joint trajectory prediction and controllable generation in autonomous driving.
We introduce Optimal Gaussian Diffusion (OGD) and Estimated Clean Manifold (ECM) Guidance.
Our methodology streamlines the generative process, enabling practical applications with reduced computational overhead.
arXiv Detail & Related papers (2024-08-01T17:59:59Z) - FT2Ra: A Fine-Tuning-Inspired Approach to Retrieval-Augmented Code Completion [24.964973946366335]
We develop a novel retrieval-based method, FT2Ra, which aims to mimic genuine fine-tuning.
FT2Ra achieves a 4.29% improvement in accuracy compared to the best baseline method on UniXcoder.
arXiv Detail & Related papers (2024-04-02T01:42:15Z) - A network-constrain Weibull AFT model for biomarkers discovery [0.0]
AFTNet is a network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model.
We present an efficient iterative computational algorithm based on the proximal descent gradient method.
arXiv Detail & Related papers (2024-02-28T11:12:53Z) - Fast Latent Factor Analysis via a Fuzzy PID-Incorporated Stochastic
Gradient Descent Algorithm [1.984879854062214]
A gradient descent (SGD)-based latent factor analysis model is remarkably effective in extracting valuable information from an HDI matrix.
A standard SGD algorithm learns a latent factor relying on the gradient of current instance error only without considering past update information.
This paper proposes a Fuzzy PID-incorporated SGD algorithm with two-fold ideas: 1) rebuilding the instance error by considering the past update information in an efficient way following the principle of PID, and 2) implementing hyper-learnings and gain adaptation following the fuzzy rules.
arXiv Detail & Related papers (2023-03-07T14:51:09Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Physics-Informed Deep Learning for Traffic State Estimation [3.779860024918729]
Traffic state estimation (TSE) reconstructs the traffic variables (e.g., density) on road segments using partially observed data.
This paper introduces a physics-informed deep learning (PIDL) framework to efficiently conduct high-quality TSE with small amounts of observed data.
arXiv Detail & Related papers (2021-01-17T03:28:32Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
Communication bottleneck has been a critical problem in large-scale deep learning.
We propose a new distributed error feedback (DEF) algorithm, which shows better convergence than error feedback for non-efficient distributed problems.
We also propose DEFA to accelerate the generalization of DEF, which shows better bounds than DEF.
arXiv Detail & Related papers (2020-04-11T03:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.