Efficient and Robust Freeway Traffic Speed Estimation under Oblique Grid using Vehicle Trajectory Data
- URL: http://arxiv.org/abs/2411.05842v1
- Date: Wed, 06 Nov 2024 15:13:40 GMT
- Title: Efficient and Robust Freeway Traffic Speed Estimation under Oblique Grid using Vehicle Trajectory Data
- Authors: Yang He, Chengchuan An, Yuheng Jia, Jiachao Liu, Zhenbo Lu, Jingxin Xia,
- Abstract summary: We propose an efficient and robust low-rank model for precise oblique traffic speed state estimation.
The proposed method achieves up to 12% improvement in Root Mean Square Error (RMSE) in the TSE scenarios.
It runs more than 20 times faster than the state-of-the-art (SOTA) methods.
- Score: 19.01488741469791
- License:
- Abstract: Accurately estimating spatiotemporal traffic states on freeways is a significant challenge due to limited sensor deployment and potential data corruption. In this study, we propose an efficient and robust low-rank model for precise spatiotemporal traffic speed state estimation (TSE) using lowpenetration vehicle trajectory data. Leveraging traffic wave priors, an oblique grid-based matrix is first designed to transform the inherent dependencies of spatiotemporal traffic states into the algebraic low-rankness of a matrix. Then, with the enhanced traffic state low-rankness in the oblique matrix, a low-rank matrix completion method is tailored to explicitly capture spatiotemporal traffic propagation characteristics and precisely reconstruct traffic states. In addition, an anomaly-tolerant module based on a sparse matrix is developed to accommodate corrupted data input and thereby improve the TSE model robustness. Notably, driven by the understanding of traffic waves, the computational complexity of the proposed efficient method is only correlated with the problem size itself, not with dataset size and hyperparameter selection prevalent in existing studies. Extensive experiments demonstrate the effectiveness, robustness, and efficiency of the proposed model. The performance of the proposed method achieves up to a 12% improvement in Root Mean Squared Error (RMSE) in the TSE scenarios and an 18% improvement in RMSE in the robust TSE scenarios, and it runs more than 20 times faster than the state-of-the-art (SOTA) methods.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Spatial-Temporal Generative AI for Traffic Flow Estimation with Sparse Data of Connected Vehicles [48.32593099620544]
Traffic flow estimation (TFE) is crucial for intelligent transportation systems.
This paper introduces a novel and cost-effective TFE framework that leverages sparse,temporal generative artificial intelligence (GAI) framework.
Within this framework, the conditional encoder mines spatial-temporal correlations in the initial TFE results.
arXiv Detail & Related papers (2024-07-10T20:26:04Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
The proposed ST-Mamba model is first to leverage the power of spatial-temporal learning in traffic flow prediction without using graph modeling.
The proposed ST-Mamba model achieves a 61.11% improvement in computational speed and increases prediction accuracy by 0.67%.
Experiments with real-world traffic datasets demonstrate that the textsfST-Mamba model sets a new benchmark in traffic flow prediction.
arXiv Detail & Related papers (2024-04-20T03:57:57Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Data efficient reinforcement learning and adaptive optimal perimeter
control of network traffic dynamics [0.0]
This work proposes an integral reinforcement learning (IRL) based approach to learning the macroscopic traffic dynamics for adaptive optimal perimeter control.
To reduce the sampling complexity and use the available data more efficiently, the experience replay (ER) technique is introduced to the IRL algorithm.
The convergence of the IRL-based algorithms and the stability of the controlled traffic dynamics are proven via the Lyapunov theory.
arXiv Detail & Related papers (2022-09-13T04:28:49Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
We propose a purely data-driven and model-free solution to the traffic state estimation problem.
By imposing a low-rank assumption on this tensor structure, we can approximate characterize both global patterns and the unknown complex local dynamics.
We conduct numerical experiments on both synthetic simulation data and real-world high-resolution data, and our results demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-05-21T00:08:06Z) - Physics-Informed Deep Learning for Traffic State Estimation [3.779860024918729]
Traffic state estimation (TSE) reconstructs the traffic variables (e.g., density) on road segments using partially observed data.
This paper introduces a physics-informed deep learning (PIDL) framework to efficiently conduct high-quality TSE with small amounts of observed data.
arXiv Detail & Related papers (2021-01-17T03:28:32Z) - A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation [13.48205738743634]
Missing data imputation is common in intemporal traffic data collected from various sensing systems.
We present an efficient algorithm to obtain the optimal solution for each variable.
The proposed model also outperforms other baseline models in extreme missing scenarios.
arXiv Detail & Related papers (2020-03-23T13:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.