LEIA: Linguistic Embeddings for the Identification of Affect
- URL: http://arxiv.org/abs/2304.10973v1
- Date: Fri, 21 Apr 2023 14:17:10 GMT
- Title: LEIA: Linguistic Embeddings for the Identification of Affect
- Authors: Segun Taofeek Aroyehun, Lukas Malik, Hannah Metzler, Nikolas Haimerl,
Anna Di Natale, David Garcia
- Abstract summary: We present LEIA, a model for emotion identification in text that has been trained on a dataset of more than 6 million posts.
LEIA is based on a word masking method that enhances the learning of emotion words during model pre-training.
Our results show that LEIA generalizes its classification of anger, happiness, and sadness beyond the domain it was trained on.
- Score: 0.23848027137382474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The wealth of text data generated by social media has enabled new kinds of
analysis of emotions with language models. These models are often trained on
small and costly datasets of text annotations produced by readers who guess the
emotions expressed by others in social media posts. This affects the quality of
emotion identification methods due to training data size limitations and noise
in the production of labels used in model development. We present LEIA, a model
for emotion identification in text that has been trained on a dataset of more
than 6 million posts with self-annotated emotion labels for happiness,
affection, sadness, anger, and fear. LEIA is based on a word masking method
that enhances the learning of emotion words during model pre-training. LEIA
achieves macro-F1 values of approximately 73 on three in-domain test datasets,
outperforming other supervised and unsupervised methods in a strong benchmark
that shows that LEIA generalizes across posts, users, and time periods. We
further perform an out-of-domain evaluation on five different datasets of
social media and other sources, showing LEIA's robust performance across media,
data collection methods, and annotation schemes. Our results show that LEIA
generalizes its classification of anger, happiness, and sadness beyond the
domain it was trained on. LEIA can be applied in future research to provide
better identification of emotions in text from the perspective of the writer.
The models produced for this article are publicly available at
https://huggingface.co/LEIA
Related papers
- Recognizing Emotion Regulation Strategies from Human Behavior with Large Language Models [44.015651538470856]
Human emotions are often not expressed directly, but regulated according to internal processes and social display rules.
No method to automatically classify different emotion regulation strategies in a cross-user scenario exists.
We make use of the recently introduced textscDeep corpus for modeling the social display of the emotion shame.
A fine-tuned Llama2-7B model is able to classify the utilized emotion regulation strategy with high accuracy.
arXiv Detail & Related papers (2024-08-08T12:47:10Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - Context Unlocks Emotions: Text-based Emotion Classification Dataset
Auditing with Large Language Models [23.670143829183104]
The lack of contextual information in text data can make the annotation process of text-based emotion classification datasets challenging.
We propose a formal definition of textual context to motivate a prompting strategy to enhance such contextual information.
Our method improves alignment between inputs and their human-annotated labels from both an empirical and human-evaluated standpoint.
arXiv Detail & Related papers (2023-11-06T21:34:49Z) - LanSER: Language-Model Supported Speech Emotion Recognition [25.597250907836152]
We present LanSER, a method that enables the use of unlabeled data by inferring weak emotion labels via pre-trained large language models.
For inferring weak labels constrained to a taxonomy, we use a textual entailment approach that selects an emotion label with the highest entailment score for a speech transcript extracted via automatic speech recognition.
Our experimental results show that models pre-trained on large datasets with this weak supervision outperform other baseline models on standard SER datasets when fine-tuned, and show improved label efficiency.
arXiv Detail & Related papers (2023-09-07T19:21:08Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
The massive collection of user posts across social media platforms is primarily untapped for artificial intelligence (AI) use cases.
Natural language processing (NLP) is a subfield of AI that leverages bodies of documents, known as corpora, to train computers in human-like language understanding.
This study demonstrates that the applied results of unsupervised analysis allow a computer to predict either negative, positive, or neutral user sentiment towards plastic surgery.
arXiv Detail & Related papers (2023-07-05T20:16:20Z) - Leveraging Label Correlations in a Multi-label Setting: A Case Study in
Emotion [0.0]
We exploit label correlations in multi-label emotion recognition models to improve emotion detection.
We demonstrate state-of-the-art performance across Spanish, English, and Arabic in SemEval 2018 Task 1 E-c using monolingual BERT-based models.
arXiv Detail & Related papers (2022-10-28T02:27:18Z) - MAFW: A Large-scale, Multi-modal, Compound Affective Database for
Dynamic Facial Expression Recognition in the Wild [56.61912265155151]
We propose MAFW, a large-scale compound affective database with 10,045 video-audio clips in the wild.
Each clip is annotated with a compound emotional category and a couple of sentences that describe the subjects' affective behaviors in the clip.
For the compound emotion annotation, each clip is categorized into one or more of the 11 widely-used emotions, i.e., anger, disgust, fear, happiness, neutral, sadness, surprise, contempt, anxiety, helplessness, and disappointment.
arXiv Detail & Related papers (2022-08-01T13:34:33Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
Visual Emotion Analysis (VEA) aims to predict people's emotions towards different visual stimuli.
Existing methods often predict visual emotion distribution in a unified network, neglecting the inherent subjectivity in its crowd voting process.
We propose a novel textitSubjectivity Appraise-and-Match Network (SAMNet) to investigate the subjectivity in visual emotion distribution.
arXiv Detail & Related papers (2022-07-25T02:20:03Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - SpanEmo: Casting Multi-label Emotion Classification as Span-prediction [15.41237087996244]
We propose a new model "SpanEmo" casting multi-label emotion classification as span-prediction.
We introduce a loss function focused on modelling multiple co-existing emotions in the input sentence.
Experiments performed on the SemEval2018 multi-label emotion data over three language sets demonstrate our method's effectiveness.
arXiv Detail & Related papers (2021-01-25T12:11:04Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
We propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues.
Our model achieves state-of-the-art performance on most of the emotion categories.
Our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
arXiv Detail & Related papers (2020-09-21T06:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.