Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification
- URL: http://arxiv.org/abs/2504.16856v1
- Date: Wed, 23 Apr 2025 16:23:17 GMT
- Title: Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification
- Authors: Alexander Shvets,
- Abstract summary: Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories.<n>We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models.<n>We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three.
- Score: 56.974545305472304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.
Related papers
- Emotion-LLaMA: Multimodal Emotion Recognition and Reasoning with Instruction Tuning [55.127202990679976]
We introduce the MERR dataset, containing 28,618 coarse-grained and 4,487 fine-grained annotated samples across diverse emotional categories.
This dataset enables models to learn from varied scenarios and generalize to real-world applications.
We propose Emotion-LLaMA, a model that seamlessly integrates audio, visual, and textual inputs through emotion-specific encoders.
arXiv Detail & Related papers (2024-06-17T03:01:22Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
arXiv Detail & Related papers (2024-04-10T15:09:15Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
We investigate how well human-annotated emotion triggers correlate with features deemed salient in their prediction of emotions.
Using EmoTrigger, we evaluate the ability of large language models to identify emotion triggers.
Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.
arXiv Detail & Related papers (2023-11-16T06:20:13Z) - Reevaluating Data Partitioning for Emotion Detection in EmoWOZ [0.0]
EmoWoz is an extension of MultiWOZ that provides emotion labels for the dialogues.
MultiWOZ was partitioned initially for another purpose, resulting in a distributional shift when considering the new purpose of emotion recognition.
We propose a stratified sampling scheme based on emotion tags to address this issue, improve the dataset's distribution, and reduce dataset shift.
arXiv Detail & Related papers (2023-03-15T03:06:13Z) - Automatic Emotion Modelling in Written Stories [4.484753247472559]
We propose a set of novel Transformer-based methods for predicting emotional signals over the course of written stories.
We explore several strategies for fine-tuning a pretrained ELECTRA model and study the benefits of considering a sentence's context.
Our code and additional annotations are made available at https://github.com/lc0197/emotion_modelling_stories.
arXiv Detail & Related papers (2022-12-21T21:46:01Z) - Leveraging Label Correlations in a Multi-label Setting: A Case Study in
Emotion [0.0]
We exploit label correlations in multi-label emotion recognition models to improve emotion detection.
We demonstrate state-of-the-art performance across Spanish, English, and Arabic in SemEval 2018 Task 1 E-c using monolingual BERT-based models.
arXiv Detail & Related papers (2022-10-28T02:27:18Z) - DeepEmotex: Classifying Emotion in Text Messages using Deep Transfer
Learning [0.0]
We propose DeepEmotex an effective sequential transfer learning method to detect emotion in text.
We conduct an experimental study using both curated Twitter data sets and benchmark data sets.
DeepEmotex models achieve over 91% accuracy for multi-class emotion classification on test dataset.
arXiv Detail & Related papers (2022-06-12T03:23:40Z) - GoEmotions: A Dataset of Fine-Grained Emotions [16.05879383442812]
We introduce GoEmotions, the largest manually annotated dataset of 58k English Reddit comments, labeled for 27 emotion categories or Neutral.
Our BERT-based model achieves an average F1-score of.46 across our proposed taxonomy, leaving much room for improvement.
arXiv Detail & Related papers (2020-05-01T18:00:02Z) - EmotiCon: Context-Aware Multimodal Emotion Recognition using Frege's
Principle [71.47160118286226]
We present EmotiCon, a learning-based algorithm for context-aware perceived human emotion recognition from videos and images.
Motivated by Frege's Context Principle from psychology, our approach combines three interpretations of context for emotion recognition.
We report an Average Precision (AP) score of 35.48 across 26 classes, which is an improvement of 7-8 over prior methods.
arXiv Detail & Related papers (2020-03-14T19:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.