Approximate Shielding of Atari Agents for Safe Exploration
- URL: http://arxiv.org/abs/2304.11104v1
- Date: Fri, 21 Apr 2023 16:19:54 GMT
- Title: Approximate Shielding of Atari Agents for Safe Exploration
- Authors: Alexander W. Goodall and Francesco Belardinelli
- Abstract summary: We propose a principled algorithm for safe exploration based on the concept of shielding.
We present preliminary results that show our approximate shielding algorithm effectively reduces the rate of safety violations.
- Score: 83.55437924143615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Balancing exploration and conservatism in the constrained setting is an
important problem if we are to use reinforcement learning for meaningful tasks
in the real world. In this paper, we propose a principled algorithm for safe
exploration based on the concept of shielding. Previous approaches to shielding
assume access to a safety-relevant abstraction of the environment or a
high-fidelity simulator. Instead, our work is based on latent shielding -
another approach that leverages world models to verify policy roll-outs in the
latent space of a learned dynamics model. Our novel algorithm builds on this
previous work, using safety critics and other additional features to improve
the stability and farsightedness of the algorithm. We demonstrate the
effectiveness of our approach by running experiments on a small set of Atari
games with state dependent safety labels. We present preliminary results that
show our approximate shielding algorithm effectively reduces the rate of safety
violations, and in some cases improves the speed of convergence and quality of
the final agent.
Related papers
- Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - State-Wise Safe Reinforcement Learning With Pixel Observations [12.338614299403305]
We propose a novel pixel-observation safe RL algorithm that efficiently encodes state-wise safety constraints with unknown hazard regions.
As a joint learning framework, our approach begins by constructing a latent dynamics model with low-dimensional latent spaces derived from pixel observations.
We then build and learn a latent barrier-like function on top of the latent dynamics and conduct policy optimization simultaneously, thereby improving both safety and the total expected return.
arXiv Detail & Related papers (2023-11-03T20:32:30Z) - Approximate Model-Based Shielding for Safe Reinforcement Learning [83.55437924143615]
We propose a principled look-ahead shielding algorithm for verifying the performance of learned RL policies.
Our algorithm differs from other shielding approaches in that it does not require prior knowledge of the safety-relevant dynamics of the system.
We demonstrate superior performance to other safety-aware approaches on a set of Atari games with state-dependent safety-labels.
arXiv Detail & Related papers (2023-07-27T15:19:45Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Context-Aware Safe Reinforcement Learning for Non-Stationary
Environments [24.75527261989899]
Safety is a critical concern when deploying reinforcement learning agents for realistic tasks.
We propose the context-aware safe reinforcement learning (CASRL) method to realize safe adaptation in non-stationary environments.
Results show that the proposed algorithm significantly outperforms existing baselines in terms of safety and robustness.
arXiv Detail & Related papers (2021-01-02T23:52:22Z) - Verifiably Safe Exploration for End-to-End Reinforcement Learning [17.401496872603943]
This paper contributes a first approach toward enforcing formal safety constraints on end-to-end policies with visual inputs.
It is evaluated on a novel benchmark that emphasizes the challenge of safely exploring in the presence of hard constraints.
arXiv Detail & Related papers (2020-07-02T16:12:20Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.