論文の概要: A Group-Specific Approach to NLP for Hate Speech Detection
- arxiv url: http://arxiv.org/abs/2304.11223v1
- Date: Fri, 21 Apr 2023 19:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 19:43:40.081611
- Title: A Group-Specific Approach to NLP for Hate Speech Detection
- Title(参考訳): ヘイトスピーチ検出のためのグループ別nlpアプローチ
- Authors: Karina Halevy
- Abstract要約: オンラインヘイトスピーチ検出のためのグループ固有のNLPアプローチを提案する。
我々は、保護されたグループに対する差別に関する歴史的データを分析し、そのグループに対するヘイトスピーチのスパイクを予測する。
我々は,NLPによる反ユダヤ的ヘイトスピーチの検出を事例として,この手法を実証する。
- 参考スコア(独自算出の注目度): 2.538209532048867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic hate speech detection is an important yet complex task, requiring
knowledge of common sense, stereotypes of protected groups, and histories of
discrimination, each of which may constantly evolve. In this paper, we propose
a group-specific approach to NLP for online hate speech detection. The approach
consists of creating and infusing historical and linguistic knowledge about a
particular protected group into hate speech detection models, analyzing
historical data about discrimination against a protected group to better
predict spikes in hate speech against that group, and critically evaluating
hate speech detection models through lenses of intersectionality and ethics. We
demonstrate this approach through a case study on NLP for detection of
antisemitic hate speech. The case study synthesizes the current
English-language literature on NLP for antisemitism detection, introduces a
novel knowledge graph of antisemitic history and language from the 20th century
to the present, infuses information from the knowledge graph into a set of
tweets over Logistic Regression and uncased DistilBERT baselines, and suggests
that incorporating context from the knowledge graph can help models pick up
subtle stereotypes.
- Abstract(参考訳): 自動ヘイトスピーチ検出は、常識の知識、保護されたグループのステレオタイプ、そして識別の歴史を必要とする重要な複雑なタスクであり、それぞれが常に進化する可能性がある。
本稿では,オンラインヘイトスピーチ検出のためのグループ固有のNLPアプローチを提案する。
このアプローチは、特定の保護されたグループに関する歴史的および言語的な知識をヘイトスピーチ検出モデルに反映させ、保護されたグループに対する差別に関する歴史的データを分析し、そのグループに対するヘイトスピーチのスパイクをより正確に予測し、交差性と倫理のレンズを通してヘイトスピーチ検出モデルを批判的に評価する。
我々は,NLPによる反ユダヤ的ヘイトスピーチの検出を事例として,この手法を実証する。
このケーススタディは、反ユダヤ主義検出のためのNLPに関する現在の英語文献を合成し、20世紀から現在までの反ユダヤ主義の歴史と言語に関する新しい知識グラフを導入し、知識グラフからの情報をロジスティック回帰と未解決のディスティバートベースライン上の一連のツイートに注入し、知識グラフからコンテキストを組み込むことが、微妙なステレオタイプを拾い上げるのに役立つことを示唆している。
関連論文リスト
- Hierarchical Sentiment Analysis Framework for Hate Speech Detection: Implementing Binary and Multiclass Classification Strategy [0.0]
本稿では,英語におけるヘイトスピーチを検出するために,共有感情表現と統合された新しいマルチタスクモデルを提案する。
我々は、感情分析とトランスフォーマーに基づく訓練モデルを利用することで、複数のデータセット間でのヘイトスピーチの検出を大幅に改善できると結論付けた。
論文 参考訳(メタデータ) (2024-11-03T04:11:33Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
既存の手法の大きな制限は、ヘイトスピーチ検出がコンテキストの問題である点である。
近年,大規模言語モデル (LLM) はいくつかの自然言語処理において最先端の性能を示した。
本研究は, ヘイトスピーチの文脈を効果的に把握する上で, 巧妙な推論プロンプトが有効であることを明らかにする。
論文 参考訳(メタデータ) (2024-01-07T00:39:33Z) - On the Challenges of Building Datasets for Hate Speech Detection [0.0]
我々はまず,データ中心のレンズを用いてヘイトスピーチ検出を取り巻く問題を分析する。
次に、データ生成パイプラインを7つの広範囲にわたってカプセル化する、包括的なフレームワークの概要を示します。
論文 参考訳(メタデータ) (2023-09-06T11:15:47Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
本稿では,ヘイトスピーチ検出のための新しい双方向コントラスト学習フレームワークを提案する。
本フレームワークは,自己教師型学習と教師型学習の損失を協調的に最適化し,スパンレベルの情報を取得する。
公開可能な2つの英語データセットの実験を行い、実験結果から、提案モデルが最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T13:23:36Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Assessing the impact of contextual information in hate speech detection [0.48369513656026514]
我々は,Twitter上のメディアからのニュース投稿に対するユーザの反応に基づいた,文脈的ヘイトスピーチ検出のための新しいコーパスを提供する。
このコーパスはリオプラテンセ方言のスペイン語で収集され、新型コロナウイルスのパンデミックに関連するヘイトスピーチに焦点を当てている。
論文 参考訳(メタデータ) (2022-10-02T09:04:47Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - COLD: A Benchmark for Chinese Offensive Language Detection [54.60909500459201]
COLDatasetは、37kの注釈付き文を持つ中国の攻撃的言語データセットである。
また、人気のある中国語モデルの出力攻撃性を研究するために、textscCOLDetectorを提案する。
我々の資源と分析は、中国のオンラインコミュニティを解毒し、生成言語モデルの安全性を評価することを目的としている。
論文 参考訳(メタデータ) (2022-01-16T11:47:23Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
我々は,ゼロ知識とリミテッド知識の両方の敵からの攻撃の下で,そのようなパラダイムの敵対的脆弱性を調査するための最初の試みを行う。
実験結果から, SUPERB が提案するパラダイムは, 限られた知識を持つ敵に対して脆弱であることが示唆された。
論文 参考訳(メタデータ) (2021-11-08T08:44:04Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
この研究は、暗黙のヘイトスピーチの理論的に正当化された分類法と、各メッセージにきめ細かいラベルを付けたベンチマークコーパスを導入している。
本稿では、同時代のベースラインを用いて、暗黙のヘイトスピーチを検出し、説明するためにデータセットを体系的に分析する。
論文 参考訳(メタデータ) (2021-09-11T16:52:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。