Identifying Appropriate Intellectual Property Protection Mechanisms for
Machine Learning Models: A Systematization of Watermarking, Fingerprinting,
Model Access, and Attacks
- URL: http://arxiv.org/abs/2304.11285v1
- Date: Sat, 22 Apr 2023 01:05:48 GMT
- Title: Identifying Appropriate Intellectual Property Protection Mechanisms for
Machine Learning Models: A Systematization of Watermarking, Fingerprinting,
Model Access, and Attacks
- Authors: Isabell Lederer and Rudolf Mayer and Andreas Rauber
- Abstract summary: The commercial use of Machine Learning (ML) is spreading; at the same time, ML models are becoming more complex and more expensive to train.
In this paper, we systematize our findings on IPP in ML, while focusing on threats and attacks identified and defenses proposed at the time of writing.
We develop a comprehensive threat model for IP in ML, categorizing attacks and defenses within a unified and consolidated taxonomy.
- Score: 0.1031296820074812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The commercial use of Machine Learning (ML) is spreading; at the same time,
ML models are becoming more complex and more expensive to train, which makes
Intellectual Property Protection (IPP) of trained models a pressing issue.
Unlike other domains that can build on a solid understanding of the threats,
attacks and defenses available to protect their IP, the ML-related research in
this regard is still very fragmented. This is also due to a missing unified
view as well as a common taxonomy of these aspects.
In this paper, we systematize our findings on IPP in ML, while focusing on
threats and attacks identified and defenses proposed at the time of writing. We
develop a comprehensive threat model for IP in ML, categorizing attacks and
defenses within a unified and consolidated taxonomy, thus bridging research
from both the ML and security communities.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
Large language models (LLMs) demonstrate general intelligence across a variety of machine learning tasks.
adversaries can still utilize model extraction attacks to steal the model intelligence encoded in model generation.
Watermarking technology offers a promising solution for defending against such attacks by embedding unique identifiers into the model-generated content.
arXiv Detail & Related papers (2024-05-03T06:41:48Z) - Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
Large Language Models (LLMs) have become a cornerstone in the field of Natural Language Processing (NLP)
This paper presents a comprehensive survey of the various forms of attacks targeting LLMs.
We delve into topics such as adversarial attacks that aim to manipulate model outputs, data poisoning that affects model training, and privacy concerns related to training data exploitation.
arXiv Detail & Related papers (2024-03-03T04:46:21Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - Attacks in Adversarial Machine Learning: A Systematic Survey from the
Life-cycle Perspective [69.25513235556635]
Adversarial machine learning (AML) studies the adversarial phenomenon of machine learning, which may make inconsistent or unexpected predictions with humans.
Some paradigms have been recently developed to explore this adversarial phenomenon occurring at different stages of a machine learning system.
We propose a unified mathematical framework to covering existing attack paradigms.
arXiv Detail & Related papers (2023-02-19T02:12:21Z) - Threat Assessment in Machine Learning based Systems [12.031113181911627]
We conduct an empirical study of threats reported against Machine Learning-based systems.
The study is based on 89 real-world ML attack scenarios from the MITRE's ATLAS database, the AI Incident Database, and the literature.
Results show that convolutional neural networks were one of the most targeted models among the attack scenarios.
arXiv Detail & Related papers (2022-06-30T20:19:50Z) - I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences [0.1031296820074812]
We study model stealing attacks, assessing their performance and exploring corresponding defence techniques in different settings.
We propose a taxonomy for attack and defence approaches, and provide guidelines on how to select the right attack or defence based on the goal and available resources.
arXiv Detail & Related papers (2022-06-16T21:16:41Z) - Adversarial Machine Learning Threat Analysis in Open Radio Access
Networks [37.23982660941893]
The Open Radio Access Network (O-RAN) is a new, open, adaptive, and intelligent RAN architecture.
In this paper, we present a systematic adversarial machine learning threat analysis for the O-RAN.
arXiv Detail & Related papers (2022-01-16T17:01:38Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z) - Adversarial Machine Learning: Bayesian Perspectives [0.4915744683251149]
Adversarial Machine Learning (AML) is emerging as a major field aimed at protecting machine learning (ML) systems against security threats.
In certain scenarios there may be adversaries that actively manipulate input data to fool learning systems.
This creates a new class of security vulnerabilities that ML systems may face, and a new desirable property called adversarial robustness essential to trust operations.
arXiv Detail & Related papers (2020-03-07T10:30:43Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
We study valuation models for algorithmic trading from the perspective of adversarial machine learning.
We introduce new attacks specific to this domain with size constraints that minimize attack costs.
We discuss how these attacks can be used as an analysis tool to study and evaluate the robustness properties of financial models.
arXiv Detail & Related papers (2020-02-21T22:04:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.