A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments
- URL: http://arxiv.org/abs/2502.16065v1
- Date: Sat, 22 Feb 2025 03:46:50 GMT
- Title: A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments
- Authors: Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, Yushun Dong,
- Abstract summary: Model Extraction Attacks (MEAs) threaten modern machine learning systems by enabling adversaries to steal models, exposing intellectual property and training data.<n>This survey is motivated by the urgent need to understand how the unique characteristics of cloud, edge, and federated deployments shape attack vectors and defense requirements.<n>We systematically examine the evolution of attack methodologies and defense mechanisms across these environments, demonstrating how environmental factors influence security strategies in critical sectors such as autonomous vehicles, healthcare, and financial services.
- Score: 55.60375624503877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model Extraction Attacks (MEAs) threaten modern machine learning systems by enabling adversaries to steal models, exposing intellectual property and training data. With the increasing deployment of machine learning models in distributed computing environments, including cloud, edge, and federated learning settings, each paradigm introduces distinct vulnerabilities and challenges. Without a unified perspective on MEAs across these distributed environments, organizations risk fragmented defenses, inadequate risk assessments, and substantial economic and privacy losses. This survey is motivated by the urgent need to understand how the unique characteristics of cloud, edge, and federated deployments shape attack vectors and defense requirements. We systematically examine the evolution of attack methodologies and defense mechanisms across these environments, demonstrating how environmental factors influence security strategies in critical sectors such as autonomous vehicles, healthcare, and financial services. By synthesizing recent advances in MEAs research and discussing the limitations of current evaluation practices, this survey provides essential insights for developing robust and adaptive defense strategies. Our comprehensive approach highlights the importance of integrating protective measures across the entire distributed computing landscape to ensure the secure deployment of machine learning models.
Related papers
- Model Privacy: A Unified Framework to Understand Model Stealing Attacks and Defenses [11.939472526374246]
This work presents a framework called Model Privacy'', providing a foundation for comprehensively analyzing model stealing attacks and defenses.<n>We propose methods to quantify the goodness of attack and defense strategies, and analyze the fundamental tradeoffs between utility and privacy in ML models.
arXiv Detail & Related papers (2025-02-21T16:29:11Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.<n>We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
We introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics.<n>The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats.<n>It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems.
arXiv Detail & Related papers (2024-12-09T07:07:17Z) - Membership Inference Attacks and Defenses in Federated Learning: A Survey [25.581491871183815]
Federated learning is a decentralized machine learning approach where clients train models locally and share model updates to develop a global model.<n>One of the key threats is membership inference attacks, which target clients' privacy by determining whether a specific example is part of the training set.<n>These attacks can compromise sensitive information in real-world applications, such as medical diagnoses within a healthcare system.
arXiv Detail & Related papers (2024-12-09T02:39:58Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence.
This paper conceptualizes cybersafety and cybersecurity in the context of multimodal learning.
We present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats.
arXiv Detail & Related papers (2024-11-17T23:06:20Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
Security and privacy issues have undermined users' confidence in pre-trained models.
Current literature lacks a clear taxonomy of emerging attacks and defenses for pre-trained models.
This taxonomy categorizes attacks and defenses into No-Change, Input-Change, and Model-Change approaches.
arXiv Detail & Related papers (2024-11-12T10:15:33Z) - Survey of Security and Data Attacks on Machine Unlearning In Financial and E-Commerce [0.0]
This paper surveys the landscape of security and data attacks on machine unlearning, with a focus on financial and e-commerce applications.
To mitigate these risks, various defense strategies are examined, including differential privacy, robust cryptographic guarantees, and Zero-Knowledge Proofs (ZKPs)
This survey highlights the need for continued research and innovation in secure machine unlearning, as well as the importance of developing strong defenses against evolving attack vectors.
arXiv Detail & Related papers (2024-09-29T00:30:36Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
Large Language Models (LLMs) have become a cornerstone in the field of Natural Language Processing (NLP)
This paper presents a comprehensive survey of the various forms of attacks targeting LLMs.
We delve into topics such as adversarial attacks that aim to manipulate model outputs, data poisoning that affects model training, and privacy concerns related to training data exploitation.
arXiv Detail & Related papers (2024-03-03T04:46:21Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.