論文の概要: Perfectionism Search Algorithm (PSA): An Efficient Meta-Heuristic
Optimization Approach
- arxiv url: http://arxiv.org/abs/2304.11486v2
- Date: Fri, 13 Oct 2023 16:17:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 17:56:14.943375
- Title: Perfectionism Search Algorithm (PSA): An Efficient Meta-Heuristic
Optimization Approach
- Title(参考訳): Perfectionism Search Algorithm (PSA): 効率的なメタヒューリスティック最適化手法
- Authors: A. Ghodousian, M. Mollakazemiha, N. Karimian
- Abstract要約: 本稿では,Perfectionism Search Algorithm (PSA) と呼ばれる,人口ベースメタヒューリスティック最適化アルゴリズムを提案する。
PSAアルゴリズムはヒューイットとフレットによって提案された完全主義の最も一般的なモデルの一つから着想を得ている。
その結果,他のよく知られたアルゴリズムと比較して,提案アルゴリズムの高性能性を確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel population-based meta-heuristic optimization
algorithm, called Perfectionism Search Algorithm (PSA), which is based on the
psychological aspects of perfectionism. The PSA algorithm takes inspiration
from one of the most popular model of perfectionism, which was proposed by
Hewitt and Flett. During each iteration of the PSA algorithm, new solutions are
generated by mimicking different types and aspects of perfectionistic behavior.
In order to have a complete perspective on the performance of PSA, the proposed
algorithm is tested with various nonlinear optimization problems, through
selection of 35 benchmark functions from the literature. The generated
solutions for these problems, were also compared with 11 well-known
meta-heuristics which had been applied to many complex and practical
engineering optimization problems. The obtained results confirm the high
performance of the proposed algorithm in comparison to the other well-known
algorithms.
- Abstract(参考訳): 本稿では, 完全主義の心理学的側面に基づく, 完全主義探索アルゴリズム (psa) と呼ばれる新しい集団型メタヒューリスティック最適化アルゴリズムを提案する。
PSAアルゴリズムはヒューイットとフレットによって提案された完全主義の最も一般的なモデルの一つである。
PSAアルゴリズムの各イテレーションにおいて、異なる型と完全主義的振る舞いの側面を模倣して新しい解が生成される。
PSAの性能を十分に把握するために,本論文から35個のベンチマーク関数を選択することにより,様々な非線形最適化問題を用いて提案アルゴリズムを検証した。
これらの問題の解は、多くの複雑で実用的な工学最適化問題に適用された11の有名なメタヒューリスティックと比較された。
その結果,他のよく知られたアルゴリズムと比較して,提案アルゴリズムの高性能性を確認した。
関連論文リスト
- What is Metaheuristics? A Primer for the Epidemiologists [1.2783241540121182]
本稿では,様々な分野の応用を含む基本的BATアルゴリズムとその変種について概説する。
特定の応用として、BATアルゴリズムを生体統計学的推定問題に適用し、既存のアルゴリズムに対して明らかな優位性を示す。
論文 参考訳(メタデータ) (2024-10-26T02:13:00Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - High dimensional Bayesian Optimization Algorithm for Complex System in
Time Series [1.9371782627708491]
本稿では,新しい高次元ベイズ最適化アルゴリズムを提案する。
モデルの時間依存特性や次元依存特性に基づいて,提案アルゴリズムは次元を均等に低減することができる。
最適解の最終精度を高めるために,提案アルゴリズムは,最終段階におけるアダムに基づく一連のステップに基づく局所探索を追加する。
論文 参考訳(メタデータ) (2021-08-04T21:21:17Z) - Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem [0.9990687944474739]
本稿では,動的キャット群最適化(Dynamic Cat Swarm Optimization)と呼ばれる,強力な群知能メタヒューリスティック最適化アルゴリズムを提案する。
提案アルゴリズムは,アルゴリズムの選択スキームと探索モードを変更することにより,これらの位相間の適切なバランスを与える新しい手法を提案する。
最適化の結果,提案アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2021-04-27T19:41:27Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。