論文の概要: DiffVoice: Text-to-Speech with Latent Diffusion
- arxiv url: http://arxiv.org/abs/2304.11750v1
- Date: Sun, 23 Apr 2023 21:05:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 16:37:19.442564
- Title: DiffVoice: Text-to-Speech with Latent Diffusion
- Title(参考訳): DiffVoice:潜時拡散によるテキスト音声合成
- Authors: Zhijun Liu, Yiwei Guo, Kai Yu
- Abstract要約: 本稿では,遅延拡散に基づく新しい音声合成モデルDiffVoiceを提案する。
LJSpeech と LibriTTS データセットの主観評価は,本手法が自然界で最高の公開システムに勝っていることを示す。
- 参考スコア(独自算出の注目度): 18.150627638754923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present DiffVoice, a novel text-to-speech model based on
latent diffusion. We propose to first encode speech signals into a phoneme-rate
latent representation with a variational autoencoder enhanced by adversarial
training, and then jointly model the duration and the latent representation
with a diffusion model. Subjective evaluations on LJSpeech and LibriTTS
datasets demonstrate that our method beats the best publicly available systems
in naturalness. By adopting recent generative inverse problem solving
algorithms for diffusion models, DiffVoice achieves the state-of-the-art
performance in text-based speech editing, and zero-shot adaptation.
- Abstract(参考訳): 本稿では,潜伏拡散に基づく新しい音声合成モデルdiffvoiceを提案する。
本稿では,まず,可変オートエンコーダを用いて音声信号を音素レートの潜在表現に符号化し,その持続時間と潜在表現を拡散モデルで共同でモデル化する。
LJSpeech と LibriTTS データセットの主観評価は,本手法が自然界で最高の公開システムを上回ることを示した。
DiffVoiceは、拡散モデルに対する最近の生成逆問題解アルゴリズムを採用することにより、テキストベースの音声編集における最先端性能とゼロショット適応を実現する。
関連論文リスト
- Diffusion-based Unsupervised Audio-visual Speech Enhancement [26.937216751657697]
本稿では,新しい教師なし音声強調(AVSE)手法を提案する。
拡散に基づく音声視覚音声生成モデルと非負行列分解(NMF)ノイズモデルを組み合わせる。
実験結果から,提案手法は音声のみのアプローチより優れているだけでなく,近年の教師付き AVSE 法よりも優れていたことが確認された。
論文 参考訳(メタデータ) (2024-10-04T12:22:54Z) - Sample-Efficient Diffusion for Text-To-Speech Synthesis [31.372486998377966]
U-Audio Transformer (U-AT)と呼ばれる新しい拡散アーキテクチャに基づいている。
SESDは1k時間未満の音声のトレーニングにもかかわらず、印象的な結果が得られる。
2%未満のトレーニングデータを使用しながら、最先端の自己回帰モデルであるVALL-Eよりも知的な音声を合成する。
論文 参考訳(メタデータ) (2024-09-01T20:34:36Z) - DiffSHEG: A Diffusion-Based Approach for Real-Time Speech-driven Holistic 3D Expression and Gesture Generation [72.85685916829321]
DiffSHEGは、任意の長さの音声駆動型ホロスティック3次元表現とジェスチャー生成のための拡散に基づくアプローチである。
DiffSHEGは、表現的および同期的動作のリアルタイム生成を可能にすることで、デジタル人間とエンボディエージェントの開発における様々な応用の可能性を示した。
論文 参考訳(メタデータ) (2024-01-09T11:38:18Z) - uSee: Unified Speech Enhancement and Editing with Conditional Diffusion
Models [57.71199494492223]
本稿では,条件付き拡散モデルを用いた統一音声強調編集(uSee)モデルを提案する。
実験の結果,提案したuSeeモデルは,他の生成的音声強調モデルと比較して,発声および発声の双方において優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-02T04:36:39Z) - Unsupervised speech enhancement with diffusion-based generative models [0.0]
拡散モデルの生成力を生かし、教師なしの方法で機能する代替手法を提案する。
本研究では,学習したクリーン音声と音声信号推論のための雑音モデルを組み合わせることで,音声強調のための後部サンプリング手法を開発した。
近年の変分オートエンコーダ (VAE) による教師なし手法と, 最先端の拡散型教師方式と比較して, 有望な結果が得られた。
論文 参考訳(メタデータ) (2023-09-19T09:11:31Z) - Minimally-Supervised Speech Synthesis with Conditional Diffusion Model
and Language Model: A Comparative Study of Semantic Coding [57.42429912884543]
Diff-LM-Speech, Tetra-Diff-Speech, Tri-Diff-Speechを提案する。
また,変分オートエンコーダと韻律ボトルネックに基づくプロンプトエンコーダ構造を導入し,プロンプト表現能力の向上を図る。
実験の結果,提案手法はベースライン法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-28T11:20:23Z) - CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained
Language-Vision Models [50.42886595228255]
本稿では,橋梁としての視覚的モダリティを活用して,所望のテキスト・オーディオ対応を学習することを提案する。
我々は、事前訓練されたコントラスト言語画像事前学習モデルによって符号化されたビデオフレームを考慮し、条件付き拡散モデルを用いてビデオの音声トラックを生成する。
論文 参考訳(メタデータ) (2023-06-16T05:42:01Z) - UnDiff: Unsupervised Voice Restoration with Unconditional Diffusion
Model [1.0874597293913013]
UnDiffは様々な音声逆タスクを解くことができる拡散確率モデルである。
インバージョン劣化、ニューラルボコーディング、ソース分離など、さまざまなタスクに適応することができる。
論文 参考訳(メタデータ) (2023-06-01T14:22:55Z) - A Survey on Audio Diffusion Models: Text To Speech Synthesis and
Enhancement in Generative AI [64.71397830291838]
生成AIは様々な分野で印象的な性能を示しており、音声合成は興味深い方向である。
拡散モデルを最も一般的な生成モデルとし、テキストから音声への拡張と音声への拡張という2つのアクティブなタスクを試みている。
本研究は,既存の調査を補完する音声拡散モデルに関する調査を行う。
論文 参考訳(メタデータ) (2023-03-23T15:17:15Z) - SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers [50.90457644954857]
本研究では,拡散モデルを用いてシーケンス・ツー・シーケンスのテキスト生成を行う。
シーケンス・ツー・シーケンス生成のためのテキスト拡散モデルであるSeqDiffuSeqを提案する。
実験結果は、テキストの品質と推論時間の観点から、シーケンス・ツー・シーケンス生成の優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-20T15:16:24Z) - TransFusion: Transcribing Speech with Multinomial Diffusion [20.165433724198937]
本研究では,事前学習した音声特徴に基づく拡散モデルを用いて音声認識を行う手法を提案する。
我々は,LibriSpeech音声認識ベンチマークにおいて,既存の高性能コントラストモデルに匹敵する性能を示す。
また,多項拡散モデルのサンプリングと復号化を効果的に行う新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T10:01:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。