Towards a Praxis for Intercultural Ethics in Explainable AI
- URL: http://arxiv.org/abs/2304.11861v2
- Date: Tue, 25 Apr 2023 15:07:51 GMT
- Title: Towards a Praxis for Intercultural Ethics in Explainable AI
- Authors: Chinasa T. Okolo
- Abstract summary: This article introduces the concept of an intercultural ethics approach to AI explainability.
It examines how cultural nuances impact the adoption and use of technology, the factors that impede how technical concepts such as AI are explained, and how integrating an intercultural ethics approach in the development of XAI can improve user understanding and facilitate efficient usage of these methods.
- Score: 1.90365714903665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable AI (XAI) is often promoted with the idea of helping users
understand how machine learning models function and produce predictions. Still,
most of these benefits are reserved for those with specialized domain
knowledge, such as machine learning developers. Recent research has argued that
making AI explainable can be a viable way of making AI more useful in
real-world contexts, especially within low-resource domains in the Global
South. While AI has transcended borders, a limited amount of work focuses on
democratizing the concept of explainable AI to the "majority world", leaving
much room to explore and develop new approaches within this space that cater to
the distinct needs of users within culturally and socially-diverse regions.
This article introduces the concept of an intercultural ethics approach to AI
explainability. It examines how cultural nuances impact the adoption and use of
technology, the factors that impede how technical concepts such as AI are
explained, and how integrating an intercultural ethics approach in the
development of XAI can improve user understanding and facilitate efficient
usage of these methods.
Related papers
- Human-Centric eXplainable AI in Education [0.0]
This paper explores Human-Centric eXplainable AI (HCXAI) in the educational landscape.
It emphasizes its role in enhancing learning outcomes, fostering trust among users, and ensuring transparency in AI-driven tools.
It outlines comprehensive frameworks for developing HCXAI systems that prioritize user understanding and engagement.
arXiv Detail & Related papers (2024-10-18T14:02:47Z) - Distributed agency in second language learning and teaching through generative AI [0.0]
ChatGPT can provide informal second language practice through chats in written or voice forms.
Instructors can use AI to build learning and assessment materials in a variety of media.
arXiv Detail & Related papers (2024-03-29T14:55:40Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
We introduce an intelligent system (CL-XAI) for Cognitive Learning which is supported by artificial intelligence (AI) tools.
The use of CL-XAI is illustrated with a game-inspired virtual use case where learners tackle problems to enhance problem-solving skills.
arXiv Detail & Related papers (2023-12-19T16:13:47Z) - Agency and legibility for artists through Experiential AI [12.941266914933454]
Experiential AI is an emerging research field that addresses the challenge of making AI tangible and explicit.
We report on an empirical case study of an experiential AI system designed for creative data exploration.
We discuss how experiential AI can increase legibility and agency for artists.
arXiv Detail & Related papers (2023-06-04T11:00:07Z) - Cultural Incongruencies in Artificial Intelligence [5.817158625734485]
We describe a set of cultural dependencies and incongruencies in the context of AI-based language and vision technologies.
Problems arise when these technologies interact with globally diverse societies and cultures, with different values and interpretive practices.
arXiv Detail & Related papers (2022-11-19T18:45:02Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.