論文の概要: Universal Domain Adaptation via Compressive Attention Matching
- arxiv url: http://arxiv.org/abs/2304.11862v1
- Date: Mon, 24 Apr 2023 07:16:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 16:00:15.700153
- Title: Universal Domain Adaptation via Compressive Attention Matching
- Title(参考訳): 圧縮的注意マッチングによるユニバーサルドメイン適応
- Authors: Didi Zhu, Yincuan Li, Junkun Yuan, Zexi Li, Yunfeng Shao, Kun Kuang
and Chao Wu
- Abstract要約: ユニバーサルドメイン適応(UniDA)は、ラベルセットに関する事前の知識なしで、ソースドメインからターゲットドメインに知識を転送することを目的としている。
課題は、ターゲットサンプルが共通のカテゴリに属するかどうかを決定する方法にある。
視覚変換器の自己注意機構を利用したユニバーサルアテンションマッチングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.595465568869985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Universal domain adaptation (UniDA) aims to transfer knowledge from the
source domain to the target domain without any prior knowledge about the label
set.
The challenge lies in how to determine whether the target samples belong to
common categories.
The mainstream methods make judgments based on the sample features, which
overemphasizes global information while ignoring the most crucial local objects
in the image, resulting in limited accuracy.
To address this issue,
we propose a Universal Attention Matching (UniAM) framework by exploiting the
self-attention mechanism in vision transformer to capture the crucial object
information.
The proposed framework introduces a novel Compressive Attention Matching
(CAM) approach to explore the core information by compressively representing
attentions.
Furthermore, CAM incorporates a residual-based measurement to determine the
sample commonness. By utilizing the measurement, UniAM achieves domain-wise and
category-wise Common Feature Alignment (CFA) and Target Class Separation (TCS).
Notably, UniAM is the first method utilizing the attention in vision
transformer directly to perform classification tasks.
Extensive experiments show that UniAM outperforms the current
state-of-the-art methods on various benchmark datasets.
- Abstract(参考訳): ユニバーサルドメイン適応(UniDA)は、ラベルセットに関する事前の知識なしで、ソースドメインからターゲットドメインに知識を転送することを目的としている。
課題は、ターゲットサンプルが共通のカテゴリに属するかどうかを決定する方法にある。
主流の手法はサンプルの特徴に基づいて判断を行うが、これは画像内の最も重要な局所オブジェクトを無視しながらグローバル情報を過度に強調し、精度が制限される。
この問題を解決するために,視覚変換器の自己注意機構を利用して重要な対象情報を捕捉するユニバーサルアテンションマッチング(UniAM)フレームワークを提案する。
提案フレームワークは,注目度を圧縮的に表現することでコア情報を探究する,新しい圧縮的注意マッチング(CAM)手法を提案する。
さらに、CAMはサンプルの共通性を決定するために残留測定を組み込んでいる。
この測定を利用して、UniAMはドメインワイドおよびカテゴリワイド共通特徴調整(CFA)とターゲットクラス分離(TCS)を達成する。
特に、UniAMは視覚変換器の注意を利用して分類タスクを実行する最初の方法である。
広範な実験により、uniamは様々なベンチマークデータセットで現在の最先端のメソッドよりも優れています。
関連論文リスト
- Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
半教師付きドメイン適応(SSDA)は、ソースとターゲットのドメイン分布をブリッジすることを目的としており、少数のターゲットラベルが利用可能である。
既存のSSDAの作業は、ソースドメインとターゲットドメインの両方からラベル情報をフル活用して、ドメイン間の機能アライメントに失敗する。
本稿では,新しいSSDA手法であるIDMNE(Inter-domain Mixup with Neighborhood Expansion)を提案する。
論文 参考訳(メタデータ) (2024-01-21T10:20:46Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
単一ドメインの一般化(Single Domain Generalization)は、単一のソースドメイン上でモデルをトレーニングすることで、目に見えないターゲットドメインに一般化する問題に取り組む。
本稿では、事前学習された視覚言語モデルを用いて、テキストプロンプトを介して意味領域の概念を導入することを提案する。
本手法は,検出器のバックボーンから抽出した特徴に作用する意味的拡張戦略と,テキストに基づく分類損失によって実現される。
論文 参考訳(メタデータ) (2023-01-13T12:01:18Z) - Unified Optimal Transport Framework for Universal Domain Adaptation [27.860165056943796]
Universal Domain Adaptation (UniDA) は、ソースドメインからターゲットドメインに、ラベルセットに制約を加えることなく知識を転送することを目的としている。
既存のほとんどの手法では、共通サンプルを検出するために手動で指定または手動のしきい値を必要とする。
我々は、これらの問題を統一されたフレームワーク、すなわちUniOTで処理するために、最適なトランスポート(OT)を提案する。
論文 参考訳(メタデータ) (2022-10-31T05:07:09Z) - Polycentric Clustering and Structural Regularization for Source-free
Unsupervised Domain Adaptation [20.952542421577487]
Source-Free Domain Adaptation (SFDA)は、訓練済みのソースモデルから学習した知識を未確認のターゲットドメインに転送することで、ドメイン適応問題を解決することを目的としている。
既存のほとんどのメソッドは、機能プロトタイプを生成することによって、ターゲットデータに擬似ラベルを割り当てる。
本稿では,PCSRと命名された新しいフレームワークを,クラス内多中心クラスタリングおよび構造規則化戦略を通じてSFDAに取り組むために提案する。
論文 参考訳(メタデータ) (2022-10-14T02:20:48Z) - Prototype-based Domain Generalization Framework for Subject-Independent
Brain-Computer Interfaces [17.60434807901964]
脳-コンピュータインターフェース(BCI)は脳波の経時的変動により実際に使用することが困難である
本稿では,ソースデータセットから主題固有のスタイル特徴を学習する補助タスクとして,オープンセット認識技術を用いたフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-15T07:35:46Z) - Seeking Similarities over Differences: Similarity-based Domain Alignment
for Adaptive Object Detection [86.98573522894961]
本研究では,Unsupervised Domain Adaptation (UDA) アルゴリズムが検出に使用するコンポーネントを一般化するフレームワークを提案する。
具体的には、最適な設計選択を生かした新しいUDAアルゴリズムViSGAを提案し、インスタンスレベルの特徴を集約する単純だが効果的な方法を提案する。
類似性に基づくグループ化と対角トレーニングの両方により、モデルでは、ゆるやかに整列されたドメインにまたがるすべてのインスタンスにマッチせざるを得ず、機能グループを粗い整列することに集中することが可能であることが示されています。
論文 参考訳(メタデータ) (2021-10-04T13:09:56Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
教師なしのドメイン適応オブジェクト検出は、リッチラベル付きデータで訓練された元のソースドメインから、ラベルなしデータで新しいターゲットドメインに適応することを目的としている。
近年、主流のアプローチは、敵対的学習を通じてこのタスクを実行するが、それでも2つの制限に悩まされている。
上記の課題に対処するために,JADF(Joint Adaptive Detection framework)を提案する。
論文 参考訳(メタデータ) (2021-09-19T00:27:08Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
マルチソースドメイン適応(MSDA)は、複数のラベル付きソースドメインからラベルなしターゲットドメインへのタスク知識の転送を扱う。
ラベル管理下のドメインを暗黙的に整列させる深層モデルが観察されるMSDAに対して、異なる視点を提示する。
論文 参考訳(メタデータ) (2021-03-20T12:44:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。